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Abstract

Protein is quantitatively the most expensive nutrient in swine diets. Hence it is imperative to understand the
physiological roles played by amino acids in growth, development, lactation, reproduction, and health of pigs to
improve their protein nutrition and reduce the costs of pork production. Due to incomplete knowledge of amino
acid biochemistry and nutrition, it was traditionally assumed that neonatal, post-weaning, growing-finishing, and
gestating pigs could synthesize sufficient amounts of all "nutritionally nonessential amino acids" (NEAA) to support
maximum production performance. Therefore, over the past 50 years, much emphasis has been placed on dietary
requirements of nutritionally essential amino acids as building blocks for tissue proteins. However, a large body of
literature shows that NEAA, particularly glutamine, glutamate, arginine and proline regulate physiological functions
via cell signaling pathways, such as mammalian target of rapamycin, AMP-activated protein kinase, extracellular
signal-related kinase, Jun kinase, mitogen-activated protein kinase, and NEAA-derived gaseous molecules (e.g., nitric
oxide, carbon monoxide, and hydrogen sulfide). Available evidence shows that under current feeding programs,
only 70% and 55% of dietary amino acids are deposited as tissue proteins in 14-day-old sow-reared piglets and in
30-day-old pigs weaned at 21 days of age, respectively. Therefore, there is an urgent need to understand the roles
and dietary requirements of NEAA in swine nutrition. This review highlights the basic biochemistry and physiology
of absorption and utilization of amino acids in young pigs to enhance the efficacy of utilization of dietary protein
and to minimize excretion of nitrogenous wastes from the body.
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Introduction
Amino acids have been traditionally categorized as either
nutritionally essential (EAA) or non-essential (NEAA) in
animals (Table 1). The EAA must be supplemented in
the diet in adequate amounts because their carbon
skeletons are not synthesized in vivo [1,2]. Alternatively,
inter-organ metabolism of amino acids in the body leads
to the de novo synthesis of NEAA [3,4]. For example,
glutamine and glutamate released from skeletal muscle
into the circulation derive their α-amino nitrogen from
branched-chain amino acids whose carbon skeletons
cannot be formed in the body. Growing evidence shows
that pigs do not synthesize sufficient amount of NEAA
to maintain their maximum growth, development, lacta-
tion, and reproduction performance [5-7].
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Amino acids play crucial role in maintaining normal
physiological function and nutritional status of the body
[8,9]. Amino acids that regulate key metabolic pathways
of cells essential for survival, growth, development, and
reproduction of animals are recently proposed as the
“functional amino acids” [3,10]. The term “functional
amino acids” encompasses arginine, cysteine, glutamine,
glutamate, glycine, leucine, proline, and tryptophan
which are known to improve the efficiency of utilization
of dietary proteins in pigs [6,11,12].
Protein is quantitatively the most expensive nutrient in

swine diets. Complex biochemical and physiological
processes are required to transform food proteins into
tissue proteins. These events include digestion, absorp-
tion, and metabolism of amino acids that involve
enterocytes, the microbiota in the lumen of the small in-
testine, the splanchnic bed, digestive organs, and
interorgan cooperation via multiple signaling pathways
[3]. These complex processes form the fundamentals of
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Table 1 Traditional classification of AA as EAA and NEAA
in swine nutrition

EAA NEAA

Arginine1 Alanine

Histidine Asparagine

Isoleucine Aspartate

Leucine Cysteine2

Lysine Glutamate2

Methionine Glutamine2

Phenylalanine Glycine2

Threonine Proline2

Tryptophan Serine

Valine Tyrosine2

1Currently classified as an EAA for young pigs.
2Currently considered as conditionally essential amino acids. They are
synthesized insufficiently by animals at certain developmental stages or under
certain feeding conditions.
EAA = nutritionally essential AA.
NEAA = nutritionally nonessential AA.
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dynamic utilization of both EAA and NEAA (Figure 1).
Except for glutamate, glutamine, and aspartate, which are
extensively degraded in the small intestine, dietary amino
acids are primarily used for protein accretion in young
pigs [13]. Limited research has been conducted to under-
stand the utilization of amino acids towards the synthesis
of non-protein substances in animals. Based on these
studies, it has been estimated that approximately 10-40%
of dietary EAA and NEAA (e.g., asparagine, cysteine,
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Figure 1 Overall catabolism of EAA to form NEAA in swine. Dietary int
synthesis in the body. In contrast, the typical corn- and soybean meal-base
glutamate, glutamine, glycine, and proline for protein accretion for young
acids. BCAA, branched-chain amino acids; BCKA, branched-chain α-ketoacid
serine, and tyrosine) that enter the portal circulation are
degraded in extra-intestinal tissues [13].
Under current feeding programs, efficiency of the uti-

lization of dietary proteins for animal growth remains sub-
optimal. For example, in 14-day-old pigs reared by sows
and in 30-day-old pigs weaned at 21 days of age, only 70%
and 55% of dietary amino acids are deposited in tissue
proteins, respectively [13]. The remaining amino acids
must be degraded to CO2, NO, CO, H2S, methane, H2O,
ammonia, urea, nitrate, and other nitrogenous metabolites
[14,15]. Excretion of these products in urine and feces is a
source of environmental pollution and can contribute to
global climate changes. Therefore, there is an urgent need
to better understand biochemical and physiological
limitations to efficiency of amino acid utilization in swine.

Dietary essentiality of amino acids in young pigs
Amino acids are molecules that contain both amino and
acid groups. Amino acids are the primary structural build-
ing units of proteins. They form short polymer chains,
peptides or polypeptides, which subsequently lead to
proteins. There are generally 20 different amino acids in
protein structures. New findings about biochemical and
molecular actions of amino acids have provided useful
knowledge for designing new means to improve health
and growth. Arginine, histidine, isoleucine, leucine, lysine,
methionine, phenylalanine, threonine, tryptophan, and
valine are nutritionally indispensable or essential amino
acids for piglets. The pig cannot synthesize all of these
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ake of most essential amino acids exceeds their use for protein
d diet cannot provide sufficient amounts of arginine, aspartate,
pigs, and these amino acids must be synthesized from essential amino
s; D3PG, D-3-phosphoglycerate; Gluc, glucose; HYP, hydroxyproline.



Table 2 Major metabolites and functions of NEAA in nutrition and metabolism

NEAA Metabolites or direct
action

Major functions

NEAA Proteins Structural components of the body; cell growth, development, and function

Peptides Hormones, antibiotics, and antioxidants

Alanine Directly Inhibition of pyruvate kinase and hepatic autophagy; gluconeogenesis;

transamination; glucose-alanine cycle; interorgan metabolism and transport of

both carbon and nitrogen

Arginine Directly Activation of MTOR signaling; antioxidant; regulation of hormone secretion;

allosteric activation of N-acetylglutamate synthase; ammonia detoxification;

regulation of gene expression; immune function; activation of tetrahydro-

biopterin synthesis; N reservoir; methylation of proteins

Nitric oxide Signaling molecule; regulator of nutrient metabolism, vascular tone,

hemodynamics, angiogenesis, spermatogenesis, embryogenesis, fertility,

immune function, hormone secretion, wound healing, neurotransmission,

tumor growth, mitochondrial biogenesis and function

Ornithine Ammonia detoxification; syntheses of proline, glutamate and polyamines;

mitochondrial integrity; wound healing

Asparagine Directly Cell metabolism and physiology; regulation of gene expression and immune

function; ammonia detoxification; function of the nervous system

Aspartate Directly Purine, pyrimidine, asparagine, and arginine synthesis; transamination;

urea cycle; activation of NMDA receptors; synthesis of inositol and β-alanine

D-Aspartate Activation of NMDA receptors in brain

Cysteine Directly Disulfide linkage in protein; transport of sulfur

Taurine Antioxidant; regulation of cellular redox state; osmolyte

H2S A signaling molecule to regulate bloo flow, immunity, and neurological function

Glutamate Directly Glutamine, citrulline, and arginine synthesis; bridging the urea cycle with the

Krebs cycle; transamination; ammonia assimilation; flavor enhancer; activation of NMDA receptors;
N-acetylglutamate synthesis

GABA Inhibitory or excitatory neurotransmitter depending on region in brain and type

of receptor; regulation of neuronal excitability of throughout the nervous

system; modulation of muscle tone; inhibition of T-cell response and inflammation

Glutamine Directly Regulation of protein turnover through cellular MTOR signaling, gene

expression, and immune function; a major fuel for rapidly proliferating cells;

inhibition of apoptosis; syntheses of purine, pyrimidine, ornithine, citrulline, arginine, proline, and asparagines; N
reservoir ; synthesis of NAD(P)

Glu and Asp Excitatory neurotransmitters; components of the malate shuttle; cell

Metabolism; ammonia detoxification; major fuels for enterocytes

GlcN6P Synthesis of aminosugars and glycoproteins; inhibition of nitric oxide synthesis; anti-inflammation; angiogenesis

Ammonia Renal regulation of acid–base balance; synthesis of glutamate and carbamoyl- phosphate

Glycine Directly Calcium influx through a glycine-gated channel in the cell membrane; purine and serine synthesis; synthesis of
porphyrins; inhibitory neurotransmitter in the central nervous system; co-agonist with glutamate for

NMDA receptors; antioxidant; anti-inflammation; one-carbon-unit metabolism

Heme Hemoproteins (e.g., hemoglobin, myoglobin, catalase, and cytochrome c);
production of carbon monoxide (a signaling molecule)

Proline Directly Collagen structure and function; neurological function; osmoprotectant;

activation of MTOR; a sensor of cellular energy status; an antioxidant;

a regulator of the differentiation of cells (including embryonic stem cells)
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Table 2 Major metabolites and functions of NEAA in nutrition and metabolism (Continued)

H2O2 Killing pathogens; intestinal integrity; a signaling molecule; immunity

P5C Cellular redox state; DNA synthesis; lymphocyte proliferation; ornithine,

citrulline, arginine and polyamine synthesis; gene expression; stress response

OH-proline Structure and function of collagen

Serine Directly One-carbon-unit metabolism; syntheses of cysteine, purine, pyrimidine,

ceramide and phosphatidylserine; synthesis of tryptophan in bacteria;

gluconeogenesis (particularly in ruminants); protein phosphorylation

Glycine Many metabolic and regulatory functions

Choline A component of acetylcholine (a neurotransmitter), phosphatidylcholine (a

structural lipid in the membrane), betaine (a methyl donor in the one-carbon- unit metabolic pathways)

D-Serine Activation of NMDA receptors in brain

Tyrosine Directly Protein phosphorylation, nitrosation, and sulfation

Dopamine Neurotransmitter; regulation of immune response

EPN & NEPN Neurotransmitters; cell metabolism

Melanin Antioxidant; inhibition of the production of inflammatory cytokines and

superoxide; immunity; energy homeostasis; sexual activity; stress response

T3 and T4 Regulation of energy and protein metabolism, as well as growth

Cys, Glu &
Gly

Glutathione Free radical scavenger; antioxidant; cell metabolism (e.g., formation of
leukotrienes, mercapturate, glutathionylspermidine, glutathione-nitric oxide
adduct and glutathionylproteins); signal transduction; gene expression; apoptosis; cellular redox;
immune response

Gln, Asp &
Gly

Nucleic acids Coding for genetic information; gene expression; cell cycle and function; protein and uric acid synthesis;
lymphocyte proliferation

EPN, epinephrine; GABA, γ-Aminobutyrate; GlcN6P, glucosamine-6-P; HMB, β-hydroxy-β-methylbutyrate; MTOR, mechanistic target of rapamycin; NEPN,
norepinephrine; NOS, nitric oxide synthase; T3, triiodothyronine; T4, thyroxine.
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amino acids except arginine and, therefore, they must be
provided in the diet. Conversely, the amino acids that can
be synthesized in the body are termed nutritionally dis-
pensable or nonessential, including alanine, asparagine,
aspartate, cysteine, glutamate, glutamine, glycine, proline,
serine, and tyrosine. NEAA and their metabolites have
many physiological functions (Table 2). Cysteine, glutam-
ate, glutamine, glycine, proline and tyrosine are currently
considered as conditionally essential amino acids, because
they are synthesized insufficiently by animals at certain
developmental stages (e.g., the neonatal period) or under
certain feeding conditions (corn- and soybean meal-based
diets for weanling pigs).
The main function of dietary amino acids is to syn-

thesize tissue proteins in animals. Additionally, individual
amino acids have been proposed to act as signaling mole-
cules that regulate mRNA translation. For example, leu-
cine can stimulate protein synthesis in cells by enhancing
the phosphorylation of MTOR and its downstream target
proteins [16]. Almost all of the amino acids have
been implicated to affect directly or indirectly immune
function [12] and some are important precursors for
the synhesis of neurotransmitters (e.g., γ-aminobutyrate,
dopamine, and serotonin) and certain hormones (e.g.,
melatonin and thyroxine) in animals [3,17].
Sow’s colostrum and milk contain large amounts of glu-
tamate and glutamine (about 20% of total amino acids),
but a negligible amount of ornithine and citrulline [18].
Glutamate actively participates in the transamination
reactions of amino acids and is readily converted into
many amino acids in swine [3]. Glutamate is an immediate
precursor for glutamine synthesis in skeletal muscle, heart,
liver, adipose tissue, and brain [17]. Dietary glutamate is
catabolized almost completely in the small intestine of
piglets to yield ATP, CO2, proline ornithine, citrulline, and
arginine [19]. Concentrations of proline and alanine are
relatively high in the piglet’s plasma compared with glu-
tamate. Glutamate and acetyl-CoA are substrates for syn-
thesis of N-acetylglutamate within liver and enterocytes,
therefore up-regulating ammonia detoxification and argin-
ine synthesis [20,21].
Glutamine is utilized by the enterocytes of the

small intestine as another major energy substrate [22].
Glutamine could contribute more ATP to pig enterocytes
than glucose and fatty acids [23]. Wu et al. (1995)
reported that glutamine is a major substrate for synthesis
of citrulline and arginine in enterocytes of piglets from the
day of birth until seven days of age, and suggested that the
endogenous synthesis of arginine is important for the
animal’s optimal growth and development particularly
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during the neonatal period when requirements for argin-
ine are much higher than its provision from milk [23].
Glutamine is also an essential substrate for the synthesis of
glucosamine-6-phopshae, which is utilized for the tion of
all aminosugars and glycoproteins in cells. Additionally,
glutamine is required for the functions of monocytes,
macrophages, lymphocytes, and neutrophils [24]. Thus,
high concentrations of glutamine in the plasma help piglets
sustain the normal activity of lymphoid organs and the im-
mune system. Taken together, these results indicate that
glutamine is a nutritionally essential amino acids for young
pigs [10].
Arginine is generally considered nutritionally essential for

neonates, because its synthesis is inadequate for metabolic
needs [25]. Notably, arginine is the most abundant nitrogen
carrier in tissue protein and is a major factor regulating
maximal growth of young mammals [26,27]. Formation
of physiological levels of nitric oxide from arginine has an
anti-inflammatory role in the gastrointestinal tract, whereas
relatively large amounts of nitric oxide produced by
inducible nitric-oxide synthase kill various kinds of patho-
genic microorganisms [12]. Besides serving as a major vaso-
dilator, NO regulates energy metabolism and, therefore,
white-fat accretion in the body [8]. Finally, through the syn-
thesis of polyamines and protein, arginine promotes
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the proliferation of monocytes and lymphocytes, as well as
the development of T helper cells [28].
Proline was not considered by some researchers as an

EAA for young pigs [29,30]. This was based on the findings
under certain experimental conditions that there was no
difference in piglet growth performance between proline-
free and proline-supplemented diets [31] likely due to inad-
equate provision of several limiting amino acids in the basal
diet. However, young pigs (e.g., those weighing 1 to 5 kg)
are unable to synthesize sufficient proline to meet their
requirements [32]. Thus, supplementing 1% proline to the
diet for postweaning pigs enhanced intestinal and whole-
body growth [13]. Therefore, dietary proline is necessary
for maximum growth and development of young pigs.
Cysteine and tyrosine, like glutamate, glutamine and

proline, are conditionally essential amino acids for young
pigs, particularly under stressful conditions. Cysteine is
generated from the catabolism of methionine via the
transsulfuration pathway in the liver. Published studies
have shown that cysteine can reduce the dietary need for
its precursor, methionine, and can satisfy approximately
50% of the need for total sulfur amino acids [33]. Various
tissues and cells release cysteine under catabolic
conditions, and this amino acid is required for the synthe-
sis of glutathione in all cell types, including immunocytes
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[34]. Tyrosine synthesis must depend on the dietary avail-
ability of phenylalanine that cannot be synthesized by the
animal organism. Clearly, pigs fed low-protein diets
cannot produce sufficient quantities of cysteine and
tyrosine.

Digestion of dietary protein in young pigs
The digestion of dietary protein starts in the gas-
tric lumen, continues in the small intestinal lumen, and is
completed at the brush-border membrane of the entero-
cytes (Figure 2). Hydrochloric acid and gastric proteases
initiate protein hydrolysis in the lumen of the stomach.
Hydrochloric acid is secreted by the gastric parietal cells
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and functions to activate gastric proteases and dena-
ture dietary proteins. The gastric secretory capacity is in-
creased more rapidly after pigs are fed a creep diet rather
than nursed by sows [35]. The low capacity of gastric
secretion at birth may relate to immaturity of the parietal
cells in piglets. The acidity of gastric contents in the post
absorptive state is about pH 3 to 5 in milk-fed piglets dur-
ing the early postnatal period due to low gastric secretory
capacity and the high buffering capacity of sow’s milk.
Gastric proteases are secreted by the chief cells in the

gastric gland. Pepsin A, pepsin B, pepsin C, and chymosin
are four critical proteases for protein digestion. Chymosin
has strong milk-clotting ability but weak proteolytic
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activity. Clotting milk by chymosin occurs through a spe-
cific cleavage of ĸ-casein. Milk-clotting may regulate gas-
tric emptying and stimulate gastric development through
gastric distention [36]. Prochymosin has the highest
concentration at the time of birth. The concentration of
prochymosin in the fetal pig stomach is detected as early
as at day 80 of gestation [37] and this protein is cleaved to
form a biologically active enzyme.
Pepsinogen A replaces the prochymosin to become the

dominant protease in the gastric tissue of pigs by the 5th

week of age. The proteolytic activity of neonatal piglets is
relatively low in the stomach due to gastric acid secretory
capacity and the small amount of pepsinogen A secreted.
The bioactive compounds, such as immunoglobulins,
hormones, growth factors, and bioactive polypeptides
present in the colostrum and milk are able to pass the
stomach undegraded into the lumen of the small intestine
because of the low gastric proteolytic activity toward these
proteins and polypeptides. Therefore, postnatal gastro-
intestinal development in neonatal pigs possibly could be
regulated by those bioactive compounds [38].
The pancreas also secretes many types of proteases,

including trypsin, chymotrypsin, elastase, as well as
carboxypeptidases A and B. Pancreatic proteases are se-
creted as proenzymes and are activated in the lumen of
the small intestine. In the starter phase of feeding, pro-
tein digestion in the small intestine begins when the
activated pancreatic proteases in the lumen of the small
intestine cleave peptide bonds on the carboxyl side of
amino acids. Carboxypeptidases remove a single amino
acid from the carboxyl-terminal end of proteins and
peptides. Oligopeptides generated by gastric and pancreatic
proteases are further digested by membrane-bound pep-
tidases to yield free amino acids or di- and tri-peptides be-
fore being absorbed into the enterocytes. Aminopeptidase
N is the most abundant membrane-bound peptidase that
cleaves amino acids from the N-terminus of oligopeptides.

Absorption of amino acids by the small intestine of
young pigs
Absorption of amino acids by the pig small intestine mainly
occurs in the proximal region of the small intestine [39]. In-
testinal mucosal cells absorb amino acids via active trans-
port, simple diffusion, and facilitated diffusion. There are at
least four sodium-dependent amino acid transporters in the
luminal apical membrane of the intestinal mucosal cells
that are responsible for transporting amino acids from the
lumen of the small intestine into the cytoplasm [40].
After amino acids are absorbed into the enterocytes, they
are utilized for either the synthesis of proteins (inclu-
ding enzymes) and other nitrogenous metabolites (e.g., ni-
tric oxide and glutathione) or oxidation via the Krebs cycle
to water and CO2 yielding ATP (Figure 3). Amino acids
that enter the portal circulation are available for use by
extraintestinal tissues, including the liver, cells of the im-
mune system, skeletal muscle, heart, kidneys, brain, and
adipose tissue. Excessive amounts of amino acids are con-
verted into urea primarily via the urea cycle (Figure 3). Note
that ammonia bridges the Krebs cycle with the urea cycle.
Within the first three days after birth, the enterocyte

lining the villi in the proximal region of the small intes-
tine can absorb intact immunoglobulins from sow’s col-
ostrum, with the highest activity occurring within 24 h
of the postnatal life [41]. The capacity for macromolecu-
lar absorption is very important in newborn pigs, which
rely on passive immunity from the colostral antibodies.
The fetal type of enterocytes responsible for macromol-
ecular uptake is present at birth. Nineteen days after
birth, the fetal type of enterocytes change to the adult
type of enterocytes, which have the capacity to actively
digest and absorb nutrients in the solid form of food
[42]. From 24 to 36 h after birth, the transfer of
macromolecules from the intestinal epithelium into the
blood is decreased dramatically [43]. Gut closure is
associated with the postnatal replacement of fetal intes-
tinal enterocyte with the more mature cells that are in-
capable of internalizing macromolecules. The mucosal
cells of newborn pigs have a longer turnover time than
7- to 14-day-old suckling pigs because the small intes-
tine of the younger pigs has longer villi. Damaged villi in
the small intestine of neonatal pigs are replaced with
new villi at a faster rate than fetal-type villi.
The large intestine has a limited ability to absorb

amino acids and small peptides that are either present in
its lumen or from arterial blood. The proximal colon
and the cecum in piglets have villus-like structures that
are lined with the columnar epithelium, and the epithe-
lium exhibits well-defined mircrovilli on the luminal
border. As piglets grow older, their intestinal villus struc-
tures are replaced by the relatively flat ones at the muco-
sal surface [44]. The morphological changes coincide
with the transient ability of the large intestine of piglets
to absorb a small amount of amino acids [45]. Darragh
et al. (1994) reported that the capacity of the proximal
colon to absorb amino acids is reduced to an insignifi-
cant level by the age of 15 days [46].

Bioavailability of dietary amino acids to extraintestinal
tissues in young pigs
In sow-reared piglets, nearly 100% of peptide-bound amino
acids in milk proteins are hydrolyzed in the gastrointestinal
tract [13]. In postweaning pigs, true ileal digestibilities
of amino acids in animal- and plant-proteins are 80% to
90% and 70% to 85%, respectively [13]. Undigested amino
acids are used by microbes in the small intestine or enter
the large intestine [47,48]. Absorbed amino acids are not
fully available for the synthesis of proteins, peptides and
other nitrogenous products in extra-intestinal tissues,



Table 3 Composition of total AA in food ingredients (%, as-fed basis)1

AA Blood Casein Corn CSM Feather Fish Gelatin MBM Peanut PBM SBM SBM Sorghum

meal grain meal meal meal (DH) grain

DM 91.8 91.7 89.0 90.0 95.1 91.8 89.0 96.1 91.8 96.5 89.0 96.4 89.1

CP 89.6 88.0 9.3 40.3 82.1 63.4 100.1 52.0 43.9 64.3 43.6 51.8 10.1

TP 88.3 86.2 8.2 32.5 81.0 63.7 97.4 50.7 35.1 60.4 38.2 41.6 8.8

Ala 7.82 2.77 0.71 1.42 4.18 5.07 9.01 4.78 1.86 4.91 1.95 2.08 0.96

Arg 4.91 3.40 0.38 4.54 5.74 4.85 7.68 3.67 5.68 4.63 3.18 3.12 0.41

Asn 4.67 2.56 0.35 1.57 1.67 2.92 1.42 2.21 1.80 2.73 2.10 2.42 0.31

Asp 6.20 3.88 0.43 1.94 2.92 4.34 2.87 3.07 2.52 4.10 3.14 3.40 0.36

Cys 1.92 0.43 0.20 0.70 4.16 0.67 0.05 0.49 0.65 1.05 0.70 0.69 0.19

Gln 4.32 11.2 1.02 3.81 2.86 3.94 3.03 2.81 2.66 3.54 3.80 4.11 0.85

Glu 6.38 9.38 0.64 4.39 4.81 6.01 5.26 4.05 4.18 4.89 4.17 4.53 1.18

Gly 3.86 1.86 0.40 2.12 8.95 6.58 33.6 8.67 3.17 9.42 2.30 2.72 0.39

His 5.57 2.78 0.23 1.08 0.88 1.51 0.74 1.19 0.95 1.30 1.13 1.15 0.23

Hyp 0.51 0.14 0.00 0.05 4.95 1.86 12.8 2.88 0.07 3.31 0.08 0.07 0.00

Ile 2.54 4.91 0.34 1.19 3.79 3.26 1.17 1.92 1.41 2.32 2.03 2.10 0.38

Leu 11.4 8.82 1.13 2.26 6.75 5.24 2.61 3.56 2.48 4.21 3.44 3.70 1.21

Lys 8.25 7.49 0.25 1.66 2.16 5.29 3.75 3.16 1.37 3.44 2.80 2.87 0.22

Met 1.16 2.64 0.21 0.66 0.75 2.02 1.03 1.10 0.47 1.39 0.60 0.64 0.20

Phe 5.83 4.87 0.46 2.02 3.95 2.78 1.67 1.85 1.93 2.36 2.21 2.44 0.51

Pro 6.29 10.8 1.06 1.89 11.8 4.25 20.6 5.86 2.30 6.72 3.05 3.18 0.96

Ser 4.49 5.08 0.45 1.72 8.80 2.80 3.44 2.08 2.03 2.67 2.12 2.35 0.46

Trp 1.30 1.24 0.07 0.44 0.80 0.70 0.22 0.39 0.38 0.49 0.62 0.63 0.10

Thr 3.95 4.10 0.31 1.25 3.97 4.11 3.45 2.42 1.67 2.85 1.76 2.03 0.32

Tyr 2.86 5.06 0.43 1.10 2.04 2.36 0.93 1.45 1.39 1.84 1.66 1.72 0.45

Val 8.21 6.03 0.44 1.69 5.76 3.80 1.96 2.23 1.70 2.89 2.09 2.25 0.50

Adapted from Li et al. [50]. Molecular weights of intact AA were used to calculate the content of peptide-bound AA in feed ingredients. Except for fish meal which
contains 1.4% free amino acids (g/100 g sample), total free amino acids account for less than 1% of total amino acids in other ingredients.
CP = crude protein; CSM = cottonseed meal; DH = dehulled; Hyp, hydroxyproline; MBM =meat and bone meal; PBM = poultry byproduct meal; SBM = soybean meal;
TP = true protein.
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because some of them undergo irreversible catabolism to
water and CO2 [30]. Formulation of a highly efficient diet
requires knowledge about the bioavailability of amino acids
in animals. This is assessed by the true ileal digestibility
measured at the end of the small intestine after corrections
for flows of endogenous (both basal and diet-specific)
amino acids into its lumen [47]. Apparent ileal digestibility,
which is a more accurate approach than fecal digestibility
[48], is measured at the end of the small intestine without
consideration of the endogenous or exogenous origin of the
indigestible nitrogen or amino acids, therefore underesti-
mating the true digestibility of dietary protein. As a conse-
quence, a low-protein diet is undervalued to a greater
extent than a high-protein diet. Because of technical diffi-
culties in measuring the diet-induced (or diet-specific) flow
of endogenous amino acids into the lumen of the small in-
testine, this component is eliminated in determining the
standardized ileal digestibility of amino acids. Values of
standardized ileal amino-acid digestibility are intermediate
between apparent and true ileal amino-acid digestibilities
[49]. The amounts and relative proportions of all amino
acids in the diet affect the deposition of protein in pigs.

Dietary requirements of amino acids by young pigs
Protein deposition in the piglet body is affected by both
the quality and the amount of dietary protein. Compos-
ition of amino acids in common feedstuffs is shown in
Table 3. Relatively high intakes of protein and energy are
required by neonatal piglets for sustaining their rapid
growth rates. The energy density of the diet could influ-
ence the voluntary feed intake of neonatal pigs. To satisfy
the requirement for energy, feed intake increases when
the dietary energy is low. The gut capacity of neonatal pigs
would also limit their feed intake. Piglets may not be able
to consume sufficient amounts of a diet with a low energy
density to maintain their optimal growth rate. Essential



Rezaei et al. Journal of Animal Science and Biotechnology 2013, 4:7 Page 9 of 12
http://www.jasbsci.com/content/4/1/7
amino acids cannot be synthesized by piglets and should
be provided in the diet. Therefore, an adequate supply of
EAA must be ensured while considering dietary protein
requirements.
Current growth models cannot be used to accurately esti-

mate energy or amino acid requirements for neonatal pigs
(< 20 kg body weight) because there is not sufficient infor-
mation on their energy or amino acid metabolism. Rather,
total dietary lysine required between 3 and 20 kg of BW has
been estimated by equations derived from feeding
experiments. This method yields 1.45% lysine at 5 kg, 1.25%
lysine at 10 kg, 1.15% lysine at 15 kg, and 1.05% lysine at 20
kg of BW, which is in keeping with a progressive decrease
in the fractional rate of skeletal-muscle protein synthesis.
Experimental data on optimal dietary requirements of other
amino acids by neonatal pigs between birth and weaning are
not available. Thus, NRC-recommended intakes of dietary
amino acids [30] may not necessarily be ideal for piglets.
This is exemplified by dietary requirement of arginine by
young pigs [3].
Sow’s milk is thought to provide adequate amino acids

needed for the growth of neonatal pigs. However, it has been
shown that the amount of milk produced by sows during
lactation does not provide adequate amounts of all amino
acids for supporting maximal growth of piglets [51]. Hodge
(1974) and Boyd et al. (1995) demonstrated that the artifi-
cially reared neonatal pigs can grow at a rate that is at least
50% greater than that of sow-reared piglets [52,53]. Begin-
ning at eight days of age, piglets exhibits sub-maximal
growth, which may have resulted from inadequate intake of
protein or energy from sow’s milk [53]. Furthermore, argin-
ine is an EAA for the maximal growth of young mammals,
but the ratio of arginine to lysine on a gram basis was
0.35 ± 0.02 and 0.97 ± 0.05 in sow’s milk and seven days old
piglets, respectively [27]. There are low levels of arginine in
sow’s milk and, therefore, neonatal pigs must synthesize sub-
stantial amount of arginine to achieve a maximum growth
rate. Available evidence shows that endogenous synthesis of
arginine in young pigs is inadequate for their maximum
growth and that, on a dry matter basis, an ideal, highly di-
gestible diet should contain 2.04% arginine [3].

Applications of functional amino acids to piglet nutrition
Role of dietary L-arginine supplementation in enhancing
growth of milk-fed piglets
As alluded to in the preceding sections, data from artificial
rearing systems indicate that the biological potential for
growth in piglets averaging at postnatal day 21 is at least
400 g/day or ≥ 74% greater than that for sow-reared piglets
(230 g/d) and that suckling piglets start to exhibit
submaximal growth beginning at the second week after
birth [53]. Recent studies have shown that arginine
deficiency is a major factor limiting maximal growth of
milk-fed piglets [25]. Dietary supplementation with 0.2%
and 0.4% L-arginine to 7- to 21-day-old milk-fed piglets
artificially reared on a liquid-milk feeding system
increases plasma arginine concentrations (30% and
61%), decreased plasma ammonia levels (20% and 35%),
and enhances weight gain (28% and 66%) in a dose-
dependent manner [6]. Furthermore, supplementing
1.0% arginine-HCl to the diet for lactating sows
increased milk production and piglet growth, possibly
due to increases in mammary gland angiogenesis
and blood flow to the mammary gland [7]. Provision of
L-arginine, N-carbamoylglutamate (a metabolically
stable activator of intestinal arginine synthesis), or
arginine-rich rice protein concentrate to either sow-
reared or weanling pigs is also highly effective in im-
proving their growth performance and immune func-
tion [15,54-56]. These growth-promoting substances
are now available to pork producers worldwide.

Dietary L-glutamine supplementation enhances growth and
reduces mortality rate in neonatal pigs
Necrotizing enterocolitis is a major cause of death in neo-
natal piglets who have experienced intrauterine growth re-
striction (IUGR) before birth [57]. IUGR piglets are more
susceptible to infectious morbidities and have a high rate of
mortality [51]. Based on multi-faceted roles of L-glutamine
in intestinal physiology, L-glutamine (1 g/kg body weight
per day) has been administered orally to IUGR piglets to ef-
fectively improve their survival and growth [58]. Intestinal
atrophy in weanling piglets is one of the crucial problems in
swine nutrition and production. Multiple factors, such as
immunological challenges, oxidative stress, apoptosis,
inflammation, and insufficient energy provision, contribute
to the abnormal digestive tract of young pigs. Results of our
research indicated that dietary supplementation with 1% L-
glutamine prevented jejunal atrophy during the first week
postweaning and increased the gain:feed ratio by 25% during
the second week postweaning [11,59]. In all of these
experiments, dietary supplementation with up to 1.12%
L-glutamine (dry matter basis) was safe and caused no signs
of sickness or incidences of death in any pigs. Post-weaning
pigs fed a milk-based or a corn- and soybean meal-based
diet tolerated up to 1.12% supplemental L-glutamine
(calculated on a dry matter basis in the diet) for at least
3 months without any adverse effect or toxicity. These
findings led to the commercial development and availability
of feed-grade glutamine (AminoGut) by Ajinomoto Co., Inc.
for use in swine diets [60].

Effect of dietary L-proline supplementation on the growth
of young pigs
Proline metabolism in pigs differs markedly with develop-
mental stage [61,62]. Endogenous proline is synthesized
from arginine and glutamate, but in young mammals inad-
equacy of these two pathways makes proline an EAA
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[21,32]. Compared with the control group, supplementing
0.35, 0.7, 1.05, 1.4, or 2.1% L-proline to a proline-free chem-
ically defined diet containing 0.48% L-arginine and 2%
L-glutamate dose-dependently improved daily weight gains
(from 342 to 411 g per day) and the feed efficiency (gram
feed/gram gain; from 1.66 to 1.35) of young pigs, while redu-
cing concentrations of urea in plasma by one-half [63]. Not-
ably, increasing the dietary content of L-proline from 0.0
and 2.1% enhanced daily nitrogen etention from 1.27 to
1.53 g/kg body weight0.75 (metabolic weight), indicating that
piglets cannot synthesize adequately proline.

Effect of dietary L-glutamate supplementation on the
growth of weanling pigs
Glutamate is particularly abundant in sow's milk to sup-
port neonatal growth and development [64]. Because
there is no uptake of arterial blood glutamate by the gut,
the enteral diet is the primary source of glutamate for
enterocytes. In young pigs, the supply of dietary glutamate
to the gut is limited after weaning due to a marked reduc-
tion of food intake, which is associated with severe intes-
tinal atrophy, inflammation, malabsorption, and death.
Most recently, we conducted a series of experiments to
determine effects of glutamate in the form of its sodium
salt [monosodium glutamate (MSG)] on growth perform-
ance in weanling pigs [65]. Feed intake was not affected by
dietary supplementation with up to 2% MSG and was 15%
lower in pigs supplemented with 4% MSG compared with
the 0% MSG group due to high sodium intake. Compared
with the control, dietary supplementation with 1%, 2%
and 4% MSG for 3 wk dose-dependently increased: a)
plasma concentrations of glutamate, glutamine, and other
amino acids (including lysine, methionine, phenylalanine
and leucine) likely due to inhibition of catabolism of these
amino acids in the small intestine, b) daily weight gain,
and c) feed efficiency in postweaning pigs. At day 7
postweaning, dietary supplementation with 1% to 4% MSG
also increased jejunal villus height, DNA content, and
anti-oxidative capacity. The MSG supplementation dose-
dependently reduced the incidence of diarrhea during the
first week after weaning. All variables in standard hema-
tology and clinical chemistry tests, as well as gross and
microscopic structures, did not differ among the five
groups of pigs. These results indicate that dietary supple-
mentation with up to 4% MSG is safe and improves
growth performance in postweaning pigs.

Conclusion and perspectives
Despite rapid advances in amino acid nutrition over the
past decade, efficiency of the utilization of dietary pro-
tein by young pigs remains suboptimal as a result of
both biochemical and physiological limitations. Such
limitations are: [1] the extensive degradation of both EAA
and NEAA by the small intestine and extra-intestinal
tissues, [2] the obligatory use of amino acids for the pro-
duction of nonprotein nitrogenous substances, and [3]
age-dependent decline in muscle MTOR activity. Further-
more, the traditional classification of amino acids as nutri-
tionally essential or nonessential has major conceptual
limitations. It is also unfortunate that the current version
of NRC does not recommend dietary requirements of
NEAA by neonatal, postweaning, growing-finishing, or
gestating pigs because it is thought that the end points for
evaluation cannot be easily defined. However, this should
not be the case, because the classical approaches to deter-
mine dietary requirements of EAA (e.g., growth, lactation,
and reproductive performance of animals) can also be ap-
plied to NEAA. Recently, important roles for amino acids,
particularly glutamine and arginine, in regulating gene ex-
pression at both transcriptional and translational levels in
animals have been clearly demonstrated. Moreover, both
EAA and NEAA have nutritional and regulatory functions
in the body [66-70]. Recent progresses in understanding
of functional amino acids are transforming the practice of
swine nutrition worldwide. Thus, new knowledge about
metabolic transformations of amino acids and their
physiological roles in cellular signaling has greatly
advanced amino acid nutrition and also has important
practical implications for enhancing the efficiency of pig
production.
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