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Abstract

Establishment of pregnancy in pigs involves maintaining progesterone secretion from the corpora lutea in addition
to regulating a sensitive interplay between the maternal immune system and attachment of the rapidly expanding
trophoblast for nutrient absorption. The peri-implantation period of rapid trophoblastic elongation followed by
attachment to the maternal uterine endometrium is critical for establishing a sufficient placental-uterine interface
for subsequent nutrient transport for fetal survival to term, but is also marked by the required conceptus release of
factors involved with stimulating uterine secretion of histotroph and modulation of the maternal immune system.
Many endometrial genes activated by the conceptus secretory factors stimulate a tightly controlled proinflammatory
response within the uterus. A number of the cytokines released by the elongating conceptuses stimulate inducible
transcription factors such as nuclear factor kappa B (NFKB) potentially regulating the maternal uterine proinflammatory
and immune response. This review will establish the current knowledge for the role of conceptus cytokine production
and release in early development and establishment of pregnancy in the pig.
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Introduction
Establishment of pregnancy by the pre-implantation
porcine conceptuses (embryo and extraembryonic mem-
branes) requires extending the lifespan and progesterone
secretion from the corpora lutea (CL) and appropriately
contributing to the intricate interplay between the mater-
nal immune system and attachment of the rapidly expand-
ing trophoblast. Rapid (less than 1 h) elongation of the pig
conceptuses across the uterine epithelial surface provides
the physiological mechanism for the release of conceptus
estrogens (maternal recognition of pregnancy signal) to
rapidly redirect endometrial release of luteolytic prosta-
glandin F2α away from endocrine movement (towards the
uterine vasculature) to an exocrine secretion (into the
uterine lumen) to enable CL maintenance. Porcine concep-
tuses are proteolytic and highly invasive outside the luminal
environment of the uterus [1] but in utero the conceptuses
are non-invasive (invasiveness controlled by the release of
numerous endometrial protease inhibitors) resulting in
the superficial epitheliolchorial type of placentation. The
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peri-implantation period of rapid trophoblastic elongation
(Days 11 to 12) and attachment to the maternal uterine
surface (Day 13 to 18) is essential for establishing sufficient
placental uterine area for subsequent nutrient transport
for piglet survival to term. Additionally, conceptus release
of factors during this critical phase of pregnancy establish-
ment also involves the stimulation of uterine secretion of
histotroph and modulation of the maternal immune sys-
tem. The semiallogeneic conceptuses ability to modify the
maternal uterine environment into an environment favor-
able for growth and survival occurs through the activation
of inducible transcription factors within the conceptus and
uterine endometrium. Many genes activated by the con-
ceptuses stimulate a tightly controlled proinflammatory re-
sponse within the uterus [2-4]. A number of the cytokines
released by the elongating conceptuses stimulate inducible
transcription factors, such as nuclear factor kappa B
(NFKB), which are thought to contribute to the maternal
uterine proinflammatory and immune response [5]. Acti-
vation of NFKB is not limited to the immune system but
can regulate cell differentiation, proliferation and survival.
A number of recent reviews have described the complex
nature for the role of growth factors and cytokines during
implantation [5-9]. The following review will establish our
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current knowledge of the role of conceptus cytokine pro-
duction and release in early development and establish-
ment of pregnancy in the pig.

Window of implantation
To fully appreciate the intricate interplay between the con-
ceptus and uterus during the peri-implantation period re-
quires a thorough understanding of the cellular localization
and shifts in endometrial steroid receptors regulating the
release of growth factors involved with conceptus develop-
ment [4,8]. Opening of the “window of receptivity” for
trophoblastic elongation and attachment to the uterine lu-
minal epithelium is regulated through ovarian estrogen
and progesterone release and cell specific expression of
steroid receptors within the uterine luminal (LE) and glan-
dular (GE) epithelia and stroma. Although ovarian estrogen
from the developing ovulatory follicles during proestrous
and estrus is critical for priming the endometrium, proges-
terone and localization of its receptor play an essential role
with cellular communication between the uterine epithe-
lium and stroma in establishing a proper uterine environ-
ment for conceptus attachment and early development
[10-12]. Progesterone’s role in opening the window for
implantation during early pregnancy is associated with
cell-specific changes in expression of endometrial proges-
terone receptor (PGR). Epithelial PGR (specifically PGRA)
has been demonstrated to be a key regulator of uterine
epithelial-stromal crosstalk essential for uterine deve-
lopment and function [13]. While uterine stromal and
myometrial cells express PGR throughout pregnancy, a
clear spatiotemporal association exists between the down-
regulation of PGR in the endometrial LE and GE, and
receptivity for conceptus implantation [11-16]. Down-
regulation of PGR in endometrial epithelia is a conserved
event among most mammals [14-20] and is associated with
the down-regulation of high molecular weight mucin
O-linked glycoproteins such as mucin 1 which serve as
steric transmembrane inhibitors of trophoblast attach-
ment [21-24]. A uterine environment permissive for peri-
implantation conceptus development and activation of
implantation is established through the loss of PGR from
LE and GE cells. Maintenance of PGR in the stromal cell
layer stimulates expression and secretion of progesta-
medins such as fibroblast growth factor 7 (FGF7) and
hepatocyte growth factor [4,10,25] which in turn activate
multiple uterine genes involved with growth, morpho-
genesis, synthesis of enzymes and enzyme inhibitors,
extracellular matrix and cell adhesion prior to trophoblast
attachment to the uterine surface [8,12,26,27]. With cell
specific loss of PGR from the LE and GE, estrogen receptor
(specifically ESR1) is up-regulated in the uterine epithelium
[28-30]. Establishment of a receptive endometrium for
conceptus attachment is thus regulated through proges-
terone induction of epithelial PGR loss allowing finely
synchronized alterations in the LE extracellular matrix ex-
posing attachment factors such as transmembrane integrin
heterodimer receptors and release of the matricellular
protein, secreted phosphoprotein 1 (SPP1; also referred to
as osteopontin) [3,31] and balanced secretion of numerous
growth factors, cytokines, prostaglandins, enzymes and
their inhibitors which are enhanced by conceptus estrogen
synthesis and release during the peri-implantation period
[11,27,32]. Conceptus attachment and secretions also in-
crease endometrial folding and LE proliferation (Figure 1)
during early implantation in the pig [33]. The increase in
endometrial folding and immune cell trafficking to the
uterine surface may be induced by conceptus secretion of
cytokines like interleukin 1β, interferons, estrogens or a
combination of the conceptus release factors.

Conceptus development
Opening the window of receptivity for conceptus attach-
ment to the uterine endometrium (Day 10 to 14) follow-
ing down-regulation of the uterine epithelial PGR marks
a period of conceptus growth, development and change
in morphology stimulated by the release of multiple
uterine growth factors and cytokines [2-4]. During the
early peri-implantation period, the endometrium in-
creases the release of epidermal growth factor (EGF)
[34-37], insulin-like growth factor-1 (IGF-1) [38-42],
FGF7 [43,44], vascular endothelial growth factor (VEGF)
[45-47], interleukin 6 (IL6) [48-50], transforming growth
factor beta (TGFB) [51-53], and leukemia inhibitory fac-
tor (LIF) [48-50] for which the developing conceptus
trophectoderm expresses EGF-receptor (EGFR) [36],
IGF1R [54], FGFR2 [55], VEGFR1 and 2 [45,47], IL6R
[50], TGFBR1 and 2 [52], and LIFR [50]. The increased
endometrial release of EGF, FGF7, LIF, and IGF-1 are
enhanced in the epithelium during the period of concep-
tus elongation and estrogen release [42,44,50,51,55]. Re-
ceptor activation by many of the uterine secreted factors
has been shown to occur through multiple signaling
pathways such as phosphatidylinositol 3-kinase (P13K)/
AKT1 and mitogen-activated protein kinase ERK1/
2MAPK [36,47,54] which are cell signaling pathways
linked to stimulating trophectoderm proliferation, mi-
gration and survival. In addition to stimulating prolifera-
tion of trophoblast cells, TGFB, LIF and IL6 increase cell
viability and attachment in vitro [50-52].
Growth of the early developing porcine conceptuses

stimulated through the release of uterine growth factors
is essential for achieving a critical developmental thresh-
old that triggers rapid trophoblast expansion within the
uterine lumen. Timing for the increased release of
growth factors is dependent upon the length of proges-
terone stimulation which facilitates down-regulation of
epithelial PGR in the endometrium [2,3]. Several studies
have elegantly demonstrated the impact of the duration



Figure 1 Endometrial folding during pig conceptus attachment. Following rapid trophoblast elongation on Day 12 of pregnancy, conceptus
attachment to the endometrial surface epithelium induces a localized increase in endometrial surface folding on Day 14 of pregnancy (A). Local
conceptus release of IL1BE, IFN, estrogens or combination of the factors released by the conceptus to alter the uterine surface architecture
(attachment and folding) to increase the surface area needed to support the epithiochorial type of placentation in the pig and alter immune cell
trafficking to the uterine surface (B). (Tr = trophectoderm, LE = luminal epithelium, arrows = lymphocytes in the underlying stratum compactum).
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of progesterone priming in that exogenous progesterone
immediately following ovulation accelerates early con-
ceptus growth in both sheep [56,57] and cattle [58-60].
Administration of progesterone shortly after ovulation
advances down-regulation of epithelial PGR by two days
during the normal estrous cycle and pregnancy [56-60].
The advancement of epithelial PGR down regulation ac-
celerates the release of uterine growth factors for the de-
veloping sheep conceptus [61].
Release of the uterine growth factors is clearly involved

with growth and differentiation of the porcine conceptuses
following hatching from the zona pellucida on Days 6–7
of gestation. Following hatching, peri-implantation devel-
opment in the pig is unique in that conceptuses develop
from a 1–2 mm sphere to a 9–10 mm long ovoid shape
between Days 10 to 12 of pregnancy and then rapidly tran-
sition to tubular and filamentous forms by elongating at
30–40 mm/h to >100 mm in length (Figure 2) in 1 to 2 h
[12,33,62]. Rapid conceptus elongation provides the mech-
anism for delivery of estrogen across the uterine surface to
maintain CL function, stimulate secretions from the uter-
ine LE and GE which are closely linked to initiation of
trophoblast attachment to the uterine LE and establish in-
dividual placental surface area for nutrient absorption
from the underlying endometrium for individual concep-
tuses [3,23,63].
The specific factor(s) involved with triggering the
rapid morphological transformation of the ovoid con-
ceptus to its filamentous shape is currently unknown.
Although endometrial release of growth factors is in-
volved with conceptus growth and development, vari-
ation in stages of development prior to and during the
time of trophoblast elongation (spherical, ovoid, tubular
and filamentous conceptuses present within the same
litter) indicate that elongation is not necessarily triggered
by a uterine-stimulated event but rather a specific stage of
conceptus differentiation and development [33,62,64-68].
Rapid conceptus elongation does not occur through cellu-
lar hyperplasia but rather cellular remodeling [62]. The
morphological alteration in shape of the trophectoderm
and transformation of the underlying endoderm forming
filapodia provides a mechanism to physically move cells
into the elongation zone [62]. The focal point for the cel-
lular restructuring occurs from the ends of the epiblast
forming an extended band of cells (elongation zone) to the
elongating tips of the conceptus trophectoderm [3,62].
The force necessary for the cellular restructuring of the
trophoblast during elongation occurs through modifi-
cations in microfilaments and junctional complexes
[3,62,69,70]. Elongation of the conceptuses may involve
interaction of integrins on the endometrial LE apical
surface [71].
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Figure 2 Morphological stages of early conceptus development between Days 10 to 12 of pregnancy. Upon reaching a spherical
diameter of appropriately 10 mm, conceptuses rapidly transition to ovoid, tubular and filamentous morphologies within 2 to 3 h.
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As previously stated, timing of rapid conceptus elong-
ation is established by the conceptus achieving a specific
stage of development which is temporally associated
with gastrulation and formation of the extraembryonic
mesoderm [65,72-74]. Yelich et al. [72] first indicated
that 6 mm spherical conceptuses expressed gene tran-
scripts for brachyury (marker for mesoderm formation)
which precedes the initial detection of mesodermal out-
growth in 10 mm ovoid conceptuses. The increase in
brachyury expression is associated with an alteration in
steroidogenesis in the developing conceptuses [75]. Valdez
Magana et al. [68] recently reported that epiblast develop-
ment and differentiation provides the paracrine signaling
between the epiblast and trophectoderm for trophoblast
proliferation and mesoderm differentiation. Transcripts
for FGF4 are highly detectable in the porcine epiblast but
absent/low in the trophectoderm [68,76]. However in
ovoid conceptuses, FGFR2 is expressed in trophectoderm
cells where there is abundance of FGF4 ligand which
activates MAPK phosphorylation [68]. In addition, bone
morphogenetic protein 4 (BMP4) expression in the devel-
oping extraembryonic mesoderm outgrowth from the epi-
blast that occurs between trophectoderm and endoderm
stimulates BMPR2 in trophectoderm (absent in epiblast
and hypoblast). Valdez Magaña et al. [68] suggested that
increased epiblast production of FGF4 and expression of
FGFR2 in the adjacent trophectoderm cells trigger the
signaling cascade for trophoblast elongation. The novel
suggestion that FGF4 is involved in the initial response of
the conceptus is supported by information which indicates
that FGF4 is not normally released into the extracellular
fluid but moves in a gradient only over a short distance of
a few cells [77,78]. Induction of FGF4 in the epiblast
stimulating MAPK in the trophectoderm through FGFR2
could coordinate with the extraembryonic mesoderm pro-
duction of BMP4 to initiate the cascade of events involved
with modifying microfilaments and junctional complexes
necessary for the elongation process.
Although formation of the extraembryonic mesoderm

in the conceptus is clearly a marker for the time of rapid
trophoblast elongation and the cellular alternations in-
volved, the conceptus factor triggering elongation of the
porcine conceptus is unknown. Although conceptus
elongation has not been achieved in vitro, it is clear that
the conceptus activates elongation at a specific stage of
development. Presence of spherical with filamentous
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conceptuses within the same litter [12] and the failure to
advance elongation in vivo through estrogen administra-
tion prior to a stage of development for elongation
[62,67] demonstrate that initiation of trophoblast elong-
ation is regulated by conceptus development. However,
alterations in uterine secretion do have a direct impact
on the rate of conceptus development to reach the stage
for elongation.
A number of studies have evaluated the transcrip-

tome of developing spherical, ovoid, tubular and filament-
ous pig conceptuses prior to and during elongation
[64-66,72,79,80]. These studies described a multitude of
transcripts involved with steroidogenesis, lipid metabolism,
cell morphogenesis, calcium binding, protein binding and
nucleotide binding. Specific transcripts involved in ste-
roidogenesis, such as steroidogeneic acute regulatory
protein, cytochrome P450 side chain cleavage protein, 17α-
hydrolase and aromatase all increase in abundance as the
pig conceptuses approach and initiate the elongation
process [64,65,72]. However, although administration of es-
trogen can advance uterine gene expression and secretions
associated with the increase in conceptus estrogen produc-
tion at elongation; it does not induce premature elongation
of the conceptuses [81]. A number of transcripts involved
with embryonic development, attachment and immune cell
regulation such as s-adenosylhomocysteine hydrolase [79],
retinoic acid receptors and retinol binding protein [72],
TGFB [64,72], LIFR [72], interferon-γ (IFNγ), B-cell linker,
and chemokine ligand 14 [66] are altered during early con-
ceptus development. The most striking change in the con-
ceptus transcriptome during the transition from ovoid to
filamentous morphology is the increase in expression of
interleukin 1β (IL1B) [79,80]. The increase in IL1B during
transition to the filamentous form of porcine conceptus de-
velopment was first described by Tuo et al. [82]. Interleukin
1β is a proinflammatory cytokine which is dependent on
the expression of members of the IL-1 system belonging to
the IL1B/Toll-like receptor (TLR) superfamily. The IL-1
system consists of two agonists (IL1A and IL1B), two re-
ceptors (IL1R1 (functional) and IL1R2 (pseudo-receptor)),
converting enzymes, a receptor accessory protein (IL1RAP),
and multiple isoforms of receptor antagonists (IL1Rant)
[5,83] which are all present in the porcine endometrium
and conceptuses [79,84,85].
Conceptus IL-1β
Conceptus IL1B2 mRNA abundance rapidly increases
during trophoblast elongation, but decreases over 2000-
fold immediately following completion of the elongation
process [86]. Based on the timing and pattern of concep-
tus IL1B release and the presence of the IL-1 system in
the conceptuses and endometrium, Ross et al. [86] pro-
posed that conceptus IL1B secretion was the signal to
initiate the cascade of events involved with the rapid
elongation process.
Recently, analyses of pig genome sequences and ex-

pressed sequence tags (EST) indicate that gene duplication
resulted in two IL1B genes on Sus scrofa chromosome 3.
The classical IL1B1 is expressed in macrophages and
endometrial tissue while the embryonic form (IL1B2) is
only detected in the early porcine conceptus prior to at-
tachment to the uterine LE [2,87]. IL1B2 is considered
novel because the sequence is not expressed in other
mammals [88]. The two predicted protein sequences are
85% identical and are least homologous near the N-
terminus as caspase-1 cleaves this portion of the peptide
resulting in a functional protein (D.J. Mathew, M.C. Lucy
and R.D. Geisert unpublished results). Interestingly, in the
embryonic form there is a proline inserted 2 amino acids
from the predicted caspase-1 cleavage site. While the two
genes are very similar from exon 2 to exon 7, exon 1 and
the active promoter regions are different between the two
genes. The promoter differences may partially explain
variation in mRNA expression between the two forms.
Activity and cell specificity of the two forms may also
differ as recombinant IL1B2 can activate NFKB in alveolar
macrophages and uterine surface epithelium but has
reduced activity compared to recombinant IL1B1 (D.J.
Mathew, R.D. Geisert and M.C. Lucy unpublished results).
Porcine IL1B2 is secreted only within a brief window as-

sociated with the morphological and functional changes
that take place in conceptus development and elongation
on Days 10 to 12 of pregnancy [86]. It has been postulated
that one function of IL1B2 is to act as an inflammatory
mediator in the endometrium [89]. Following synthesis
and secretion by the conceptus, IL1B2 may trigger a cas-
cade of signaling events that activate the transcription fac-
tor, NFKB in the LE of the endometrium. NFKB activation
is an important component in opening the implantation
window in pigs and other mammals [90]. Genes transcrip-
tionally regulated by NFKB are involved in inflammation,
immune function, cell adhesion, and release of cytokines,
growth factors, anti-apoptotic factors and immunorecep-
tors [91]. The activation of inflammatory pathways in the
endometrium likely enhances progesterone-induced uter-
ine receptivity for conceptus implantation. It is important,
however, that the inflammation cascade triggered by
IL1B2 be tightly regulated in order to prevent rejection of
the semi-allogeneic conceptus [9]. Conceptus estrogen
release during elongation may play a key role in counter-
balancing the increased inflammatory response by acti-
vating estrogen receptor (ESR1) which can affect the
transcriptional activity of NFKB [90]. Thus, conceptus ex-
pression of IL1B2 would be consistent with the continued
activation of NFKB, whereas the synchronous estrogen
secretion by pig conceptuses may pose a suppressive
effect to prevent an inflammatory reaction that would be
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detrimental to conceptus survival [2]. Interleukin-1β in-
creases aromatase expression within human cytotropho-
blast [92] and the increased synthesis of IL1B2 by pig
conceptuses is temporally associated with elevated concep-
tus aromatase expression and the acute release of estrogen
into the uterine lumen [72,86]. Thus the increase in ex-
pression of both IL1B2 and estrogen by individual concep-
tuses that are expanding through the uterine lumen would
counter-balance stimulation of the pro-inflammatory and
immune response within the uterus.
IL1B2 may have other roles in rapid conceptus elong-

ation and the regulation of maternal recognition. IL1B is
an inducer of phospholipase A2 [93] and thus up-
regulates cell membrane arachidonic acid release, thereby
increasing membrane fluidity that is necessary for remod-
eling of the trophectoderm during elongation [2,94]. The
arachidonic acid could also be converted to prostaglandins
which are needed for placental attachment during the es-
tablishment of pregnancy. Recent results from studies with
ewes suggest that IL1B could play a role in regulating
prostaglandin-endoperoxide synthase 2 (PTGS2) and the
subsequent synthesis of prostaglandins that control con-
ceptus elongation [95]. Pig conceptus IL1B2 secretion,
therefore, may be of pivotal importance in the rapid mor-
phological transformation of the pig conceptuses on Day
12 of pregnancy.
IL1B2 activation of NFKB stimulates prostaglandin

synthesis through induction of PTGS2. IL1B1 increases
endometrial IL1R1 and in conjunction with estrogen,
IL1RAP, suggesting that IL1B2 and estrogen regulate
endometrial transcriptional activity of NFKB during elong-
ation [85,86,96]. IL1B has a stimulatory effect on endo-
metrial prostaglandin E2 (PGE2) secretion and PTGS1 and
PTGS2 mRNA expression from Days 10 to 13 of preg-
nancy [85,97-99]. The presence of PGE2 receptors in the
CL and endometrium [98] suggests that conceptus PGE2
secretion could also affect maintenance of the CL and dir-
ectly stimulate adhesion and attachment of the tropho-
blast to the uterine epithelium [100]. Conceptus secretion
of IL1B2 into the uterine lumen may also enhance endo-
metrial expression of LIF and IL6 [50] possibly through
activation of NFKB within the uterine LE and GE. IL1B1
induces human endometrial expression of LIF [101-103]
and IL6 in placental villous core mesenchymal cells
in vitro [104]. Suppression of NFKB activity in the endo-
metrium alters the timing of implantation in the mouse
which can be partially rescued by LIF supplementation
[105]. LIF and IL1B stimulate expression of fucosyltrans-
ferase enzymes which are involved with embryo attach-
ment to the uterine surface epithelium in the mouse [106].
During and following rapid conceptus elongation in the
pig, there is increased endometrial secretion of LIF and
IL6 [48-50]. Both LIFR and IL6R mRNA are detected in
porcine conceptus [49,50] suggesting that endometrial
secretion of LIF and IL6 may play an important role in
conceptus development and attachment to the uterine
surface. Blitek et al. [50] indicated that LIF and IL6 stimu-
lated proliferation and attachment of porcine trophoblast
cells in vitro. Conceptus estrogen and IL1B2 secretion
serve as major components in the embryo-uterine cross-
talk to stimulate endometrial LIF and IL6 to contribute to
the pathway for conceptus attachment to the uterine lu-
minal surface.
Several papers have investigated endometrial differential

gene expression between cyclic and pregnant pigs which
provide numerous endometrial genes and pathways that
the conceptus stimulates during the period of conceptus
elongation and attachment [107-110] which will not be
covered in this review. One interesting gene differentially
expressed during pregnancy is IL11RA [110]. IL11 and its
receptor (IL11RA) is proposed to prevent the invasion of
trophoblast cells in the mouse [111] and human [112]. Al-
though gene expression IL-11RA is lower in endometria
of pregnant pigs, there was a pregnancy-specific increase
in IL11RA on the surface epithelium [110]. As previous
indicated porcine conceptuses are proteolytic and highly
invasive outside the luminal environment of the uterus
[1]. Therefore in addition to endometrial release of prote-
ase inhibitors during trophoblast attachment, porcine
endometrial expression of IL11RA may serve to help in-
hibit the proteolytic trophoblast invasion through the sur-
face epithelium during attachment [110].

Switch to endometrial IL-18
Porcine conceptus IL1B2 gene expression and secretion is
clearly temporally associated with the rapid conceptus
elongation as a dramatic reduction in mRNA abundance
is soon followed by a depletion of IL1B2 protein in the
uterine lumen following conceptus elongation on Day 12
[86]. The loss of conceptus IL1B2 secretion following
elongation suggests that another closely related cytokine
may function at the conceptus-uterine interface to con-
tinue regulation of the immunological interactions neces-
sary for establishment of pregnancy in the pig. Interleukin
18 (IL18), also referred to as interferon-γ inducing factor
[113], is a member of the IL-1 family of pro-inflammatory
cytokines believed to play a significant role in implant-
ation. Following the loss of conceptus IL1B2 stimulation,
there is a switch to endometrial IL18 production and re-
lease during placental attachment in the pig [114]. Porcine
endometrial IL18 mRNA expression increases from Days
10 to 15 of the estrous cycle with mRNA expression in-
creasing 10-fold on Day 18 of pregnancy. However, there
is a pregnancy-specific increase in uterine luminal content
of IL18 between Days 15 and 18 due to an increase in
caspase-1 expression induced by the developing concep-
tuses [114]. Caspase-1 cleaves and activates the proforms
of both IL1B and IL18 [115]. Pro-IL18, which has
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structural similarities to pro-IL1B, is involved with mo-
dulation of the immune system through induction of
interferon-γ [116]. Conceptus secretion of IFNG increases
immediately following trophoblast elongation in the pig
[117], suggesting that the conceptuses may induce endo-
metrial IL18 release to assist in development and placental
attachment during early pregnancy. Interestingly, unlike
IL1B which is stimulated by inflammatory responses in
cells, IL18 is stored in healthy cells and its biological activ-
ity is dependent upon its release through caspase-1 pro-
cessing [118]. Although similar to IL1B, IL18 binds to a
unique IL18 receptor which consists of two receptor
chains, ligand-binding chain IL18RA and a co-receptor
IL18RB chain (similar to IL1B accessory protein), which
are required for cellular signaling [119]. The conceptus
factor that stimulates the increase in caspase-1 in the uter-
ine epithelium is unknown, although IL1B2 could stimu-
late release IL18 from the uterine epithelial cells through
increasing caspase-1 activity [120]. Biological activity of
IL18 is regulated through release of an IL18 binding
protein (IL18BP) which functions as a negative feedback
loop to suppress IFNG production and limit Th1 cell
responses.
The increased endometrial expression of caspase-1, and

release of IL18 into the uterine lumen may stimulate ex-
pression and secretion of IFNG by conceptuses [117] to
modulate the maternal immune system through signal
transducer and activator of transcription 1 (STAT1) at the
interface between trophectoderm and uterine LE [121].
The loss of conceptus IL1B2 stimulation and switch to
endometrial IL18 production during placental attachment
in the pig would decrease the potential pro-inflammatory
stimulation of the conceptuses following trophoblast elong-
ation which maybe important to control cytokine and im-
mune functions following implantation [122]. Increased
secretion of IL18 at the uterine/trophoblast interface is
associated with increased pregnancy rates in one line of
abortion-prone mice [123].

Conceptus interferons (IFN)
During the peri-implantation period of conceptus at-
tachment to the uterine LE following trophoblastic
elongation, pig conceptuses secrete of IFNG (Type II IFN)
and IFND (Type I IFN) between Days 12 to 20 of gesta-
tion [117,121,124]. Trophoblastic production and secre-
tion of two IFNs, of which IFNG is the predominate form
[125,126], is unique compared with other mammalian spe-
cies. Trophoblast secretion of IFNG and IFND would en-
able activation of a distinct gene set through two different
receptors that may provide a uniquely regulated stimu-
lation within the endometrium [127]. With the abrupt
decline in conceptus expression of IL1B2 following rapid
elongation, there is a tremendous increase in the filament-
ous conceptus trophoblastic expression of specifically
IFNG during initiation of attachment to the uterine LE on
Day 13 [66,117,121]. Unlike IFNT produced by the con-
ceptus of ruminant species, pig trophoblastic IFNs do not
directly function as a maternal recognition signal for CL
maintenance [3]. However, pig IFNG and IFND can in-
crease endometrial PGE2 secretion [128] and induce cell-
specific endometrial IFN-stimulated genes [127,129].
Joyce et al. [121] suggested that conceptus estrogens and

IFNs regulate endometrial IFN-stimulated genes through a
cell-type-specific manner. Conceptus secretion of estrogen
increases STAT1 in LE to initiate the signal for pregnancy
recognition and CL maintenance as well as inducing
changes to the apical surface glycocalyx of LE to allow con-
ceptus attachment. Conceptus IFNG and IFND induced
increases of STAT1 are limited to the underlying endomet-
rial stromal cells that express interferon regulatory factor
1, IFNG/STAT1-responsive gene, that is absent in the LE
[121]. Pig conceptuses secrete estrogen during the peri-
implantation period of pregnancy which increases uterine
LE expression of interferon regulatory factor 2 (IRF2), a
transcriptional repressor of classical IFN-stimulated genes,
which would also restrict IFNG and IFND stimulation to
the underlying stroma. Thus expression of classical IFN re-
sponsive genes such as MX1, interferon stimulated gene
15 (ISG15), IRF1, STAT1 and STAT2 are localized in the
stroma and GE in pigs [121]. The cell specific activation by
the pig trophoblastic IFNs may play an essential role in
regulating the immunological barrier for attachment of the
semi-allogeneic conceptuses [3,130]. MHC class I mole-
cules such as SLA and β2-microgobulin which are involved
with recognition of foreign cells and pathogens are not
expressed on the trophoblast and are absent in early preg-
nancy of the pig [127]. The increase in uterine angiogenesis
which occurs during the peri-implantation period between
Days 13 to18 of pregnancy [131] could also be stimulated
through the trophoblast secretion of IFNs in addition to
other conceptus and uterine angiogenic factors such as
VEGF.

Conclusion
Proper timing for conceptus growth and development is
proposed to be regulated through the initial down-
regulation of PR in the uterine LE which stimulates growth
factors to promote mesodermal differentiation and expres-
sion of FGF4 and BMP4 that initiate conceptus IL1B2 ex-
pression and release to stimulate rapid elongation of the
conceptuses throughout the uterine lumen (Figure 3). Ex-
pansion of the conceptuses throughout the uterine horns
provides the mechanism for estrogen to cover the uterine
surface for maternal recognition of pregnancy, initiate
trophoblast attachment to the LE and regulate the mater-
nal lymphocyte response to conceptus IFNs which stimu-
late vascular changes and increases angiogenesis for the
proper microenvironment for placentation.



Figure 3 Summary of conceptus/uterine interactions from Day 12 to 18 of pregnancy. Exposure of the endometrium to progesterone
secretion induces down-regulation of progesterone receptor (PGR) in the endometrial surface (LE) and glandular epithelium (GE). Progesterone
modulation of uterine function is maintained by the presence of PR in stromal cells. Down-regulation of PGR in LE opens the window of receptivity of
conceptus attachment to the endometrial surface. Progesterone stimulation increases PTGS2 within the LE increasing release of PGF2α into the uterine
vasculature inducing CL regression during the estrous cycle. On Day 11 to 12 of pregnancy, conceptus epiblast expression of FGF4 stimulates production
of BMP4 by the trophectoderm (Tr) to trigger differentiation of the mesoderm (meso) which may lead to induction of pathways to trigger conceptus
trophoblast elongation. Embryonic IL1B2 initiates cellular remodeling during elongation and activates NFKB in the LE through binding to a functional IL1
receptor (IL1RI) and its receptor accessory protein (IL1RAcP). Activation of NFKB induces endometrial genes involved with inducing a pro-inflammatory
response. IL1B2 activity in the conceptus and uterus is regulated through the level of receptor antagonist (IL1Rant) expression. Conceptus aromatase
expression enhances estrogen secretion, which binds to ESR in the LE and GE increasing endometrial PGE production and altering the movement of
PGs into the uterine lumen, thereby preventing luteolysis and maintaining pregnancy. Estrogen induction of STAT2 stimulates endometrial changes
needed for placental attachment and may also play a role in modulating NFKB pro-inflammatory responses. Following conceptus elongation, IL1B2
expression ceases but is immediately replaced by expression of IFNγ and IFNδ and increased release of IL-18 into the uterine lumen. The activity of
IL-18 is regulated through the concentration of its binding protein (IL-18BP). Activation of IFN-induced genes and conceptus PGE production may help
regulate the pro-inflammatory response and regulate lymphocyte differentiation and activation within the uterine stroma and epithelium.
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The role of IL18 and IFNG in regulating Th1 lympho-
cytes and natural killer (NK) cell responses in tissues
suggests that pig conceptus secretion of estrogens,
IL1B2, prostaglandins, IFNs and endometrial release of
IL18 serve to not only induce cell surface adhesion fac-
tors for trophoblast attachment, but also play a critical
role in balancing the immune cell migration and recog-
nition of receptors to support or reject the developing
embryos and their extraembryonic membranes. The IL-1
family of cytokines plays a critical role in the regulation
of immune cell differentiation and activity during preg-
nancy as well as many inflammatory diseases [132]. Dur-
ing pregnancy in the pig, the conceptus recruits uterine
natural killer lymphocytes, dendritic cells and other
immune cells at the sites of trophoblast attachment
which induce major changes in the endometrial vascula-
ture and angiogenesis to support the developing concep-
tus [133,134]. Although not demonstrated in the uterus
of the pig, the increase in PGE2 from the conceptuses
and endometrium may play a role in minimizing pro-
inflammatory tissue damage through switching from leu-
kotriene B2 synthesis to lipoxin A4 and release of the
anti-inflammatory resolvins and protectins [135]. Clearly
pig conceptuses release a number of paracrine factors at
the maternal/placental interface to regulate the vascular,
angiogenic and immune changes needed to establish
pregnancy (Figure 3). The conceptus IL-1 family of cyto-
kines is but one component of a larger group of signaling
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pathways involved with successful survival of developing
embryos. However, pregnancy is not only dependent upon
the presence of the various cytokines during implantation
but also in the appropriate timing of their release.
It is well established that exposure of pregnant gilts to

exogenous estrogen 48 h prior to normal conceptus re-
lease at elongation on Day 12 results in fragmentation of
the conceptus between Days 15 to 18 of pregnancy
[136,137]. Premature exposure of the endometrium to es-
trogen advances expression of multiple genes during the
period of trophoblast elongation and attachment [138].
Most of the aberrantly expressed endometrial genes are
those involved with immune cell regulation and cell adhe-
sion. Early estrogen exposure (Days 9 and 10) of pregnant
gilts does not affect endometrial IL18 mRNA expression
but disrupts the normal LE release of IL18 into the uterine
lumen [114]. Although caspase-1 increases between Days
12 to 18 in estrogen-treated gilts, there is no increase in
the luminal content of IL18 as occurs in untreated preg-
nant gilts. Lack of IL18 release from the LE may directly
affect conceptus expression of IFNG. Although STAT1 ex-
pression is present in the LE, stromal expression of STAT1
is absent in estrogen-treated gilts [121]. These data indi-
cate a temporally regulated presence of intricate inter-
actions between conceptus estrogen, IL1B2, IFNG and
uterine IL18 release in programing downstream transcrip-
tion factors needed to establish pregnancy in the pig.
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