
RESEARCH Open Access

Lactogenic hormones alter cellular and
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Abstract

Background: Bovine milk contains not only a variety of nutritional ingredients but also microRNAs (miRNAs) that
are thought to be secreted by the bovine mammary epithelial cells (BMECs). The objective of this study was to
elucidate the production of milk-related miRNAs in BMECs under the influence of lactogenic hormones.

Results: According to a microarray result of milk exosomal miRNAs prior to cellular analyses, a total of 257 miRNAs
were detected in a Holstein cow milk. Of these, 18 major miRNAs of interest in the milk were selected for an
expression analysis in BMEC culture that was treated with or without dexamethasone, insulin, and prolactin (DIP) to
induce a lactogenic differentiation. Quantitative polymerase chain reaction (qPCR) results showed that the
expressions of miR-21–5p (P = 0.005), miR-26a (P = 0.016), and miR-320a (P = 0.011) were lower in the DIP-treated
cells than in the untreated cells. In contrast, the expression of miR-339a (P = 0.017) in the cell culture medium were
lower in the DIP-treated culture than in the untreated culture. Intriguingly, the miR-148a expression in cell culture
medium was elevated by DIP treatment of BMEC culture (P = 0.018). The medium-to-cell expression ratios of miR-
103 (P = 0.025), miR-148a (P < 0.001), and miR-223 (P = 0.013) were elevated in the DIP-treated BMECs, suggesting
that the lactogenic differentiation-induced secretion of these three miRNAs in BMECs. A bioinformatic analysis
showed that the miRNAs down-regulated in the BMECs were associated with the suppression of genes related to
transcriptional regulation, protein phosphorylation, and tube development.

Conclusion: The results suggest that the miRNAs changed by lactogenic hormones are associated with milk
protein synthesis, and mammary gland development and maturation. The elevated miR-148a level in DIP-treated
BMECs may be associated with its increase in milk during the lactation period of cows.
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Background
The mammary gland is a complex organ where the epithe-
lial cell proliferates and differentiates during puberty,
pregnancy, and lactation under the influence of various
hormones such as estrogen and prolactin [1]. During
pregnancy, the complexity of the ductal system increases
through the addition of side branches, the formation of
lobuloalveolar structures, and the differentiation of
secretory epithelia. These phases of proliferation, struc-
tural formation, and lactogenic differentiation are essential

to form a functional lactating mammary gland during
pregnancy. The differentiation phase of mammary epithe-
lial cells is especially important as a step to form a system
for the generation and secretion of fatty acids, proteins
such as caseins, and the other components of milk.
MicroRNAs (miRNAs) are highly conserved noncod-

ing small RNAs that regulate the expression of target
genes in various biological processes. Primary transcripts
(pri-miRNAs) are processed into pre-miRNAs and finally
into mature miRNAs that recognize target genes as com-
ponents of the RNA-induced silencing complex (RISC),
resulting in mRNA degradation or destabilization. In re-
cent years, numerous studies have shown that the milk of
humans, pigs, goats, cows, and mice is enriched with miR-
NAs [2–4], most of which are packed in extracellular
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microvesicles that are 30–100 nm in diameter, namely
exosomes [3, 4]. Although the function of exosomal miR-
NAs in milk remains unknown thus far, the miRNA pro-
file differs during lactation and between colostrum and
milk in various mammal species [2, 5]. In particular, the
content of miR-148a in bovine milk is elevated during
5 months of lactation [2, 3], whereas those of let-7a, miR-
25, miR-30d, miR-182, miR-191, miR-200c, and miR-375
are reduced within the first month of lactation [2].
The miRNA profile in mammary gland tissue (MGT) is

also affected by lactating stages [6–11] as well as by bac-
terial infection [12–14], indicating that a milk miRNA
profile is susceptible to physiological conditions. Similarly
to various milk components such as fatty acids and milk
proteins including caseins, miRNAs are thought to be
generated and secreted in mammary epithelial cells in
mammary glands (MGs), although the quantitative
ratio of MG-originated miRNA to circulation-originated
miRNA remains unknown. A recent transcriptomic study
using a next-generation sequencing (NGS) has revealed
the miRNA expression profile of differentiated bovine
mammary epithelial cells (BMECs) [15].
In addition, the expression of miR-200a is up-regulated

during the differentiation of mouse mammary gland
epithelial cells [16]. miR-103 is up-regulated in goat mam-
mary glands toward mid-lactation and plays an important
role in milk fat synthesis in goat mammary epithelial cells
[17], suggesting that miRNAs are deeply associated with the
differentiation and function of mammary epithelial cells.
It was also demonstrated recently that miR-200c in

bovine milk is taken up not only by human macrophages
in vitro [18] but also into human plasma [19]. Moreover,
a number of miRNA species in milk including the miR-
200 family are associated with immune-related function
[4]. Exosomal miRNAs in milk are resistant to RNase,
acidic pH, boiling, and freeze-thaw cycles to a certain
extent [4, 20]. It is therefore tempting to speculate that
miRNAs are transferred from milk to the recipient and
then potentially function in animal development and the
immune system. However, it remains unclear thus far
how miRNAs in milk are generated and secreted in
mammary epithelial cells including BMECs.
Here we hypothesized that major bovine milk miR-

NAs could be generated and secreted from BMEC in
association with the lactogenic differentiation. The ob-
jective of the present study was to elucidate the gener-
ation and secretion of milk miRNAs in BMECs. To
this end, we investigated intra- and extracellular ex-
pression of milk-related miRNAs in BMEC cell cul-
tures and the alterations by lactogenesis-inducible DIP
treatment using a cell line [21]. Potential molecular
events with which the predicted target genes of miR-
NAs are associated are also discussed in light of the
results of our bioinformatic analysis.

Methods
Milk sample preparation
The animals were cared for as outlined in the Guide for
the Care and Use of Experimental Animals (Animal Care
Committee of the NARO Institute of Livestock and Grass-
land Science), which the committee accepted. Milk sam-
ples were collected from two primiparous and three
multiparous Holstein cattle (milk yield: 18.9–32.6 kg/d,
days in milk: 60–112) at NARO Institute of Livestock and
Grassland Science (Japan), using a clean tandem milking
parlor as described [22]. To avoid mastitic milk, composite
milk with low somatic cell counts (SCCs; <100,000 cells/
mL) from noninflamed four quarters was selected [23].
The milk samples were immediately stored at 4 °C over-
night. After centrifugation of the mixed milk samples from
five cows at 2,000 g for 10 min at room temperature, the
upper layer of fat was removed from the sample and the
whey fraction was recovered. The whey sample was then
centrifuged at 10,000 g at room temperature first for
30 min, then for 10 min, and stored at −80 °C until use.
One mL of the supernatant was used for milk exosome
preparation using the Total Exosome Isolation (from other
body fluids) kit (Life Technologies, Tokyo) according to
the manufacturer’s protocol. The final precipitate was used
downstream as a milk exosome sample, which could give
an averaged exosomal miRNA profile of five cows’ milk.

BMEC culture and sample collection of cell and culture
media
BMECs established as a clone [21] were cultured in 12-well
plates (Life Technologies) in Dulbecco’s modified Eagle’
medium (DMEM) (Sigma, St. Louis, MO, USA) supple-
mented with 20 % Exo-FBS Exosome-Depleted fetal bovine
serum (FBS) (System Biosciences, Mountain View, CA),
10 μg/mL apotransferrin (Sigma), 5 mM sodium acetate, 50
U/mL penicillin and 50 μg/mL streptomycin at 37 °C in
5 % CO2 for 7 d until the cells were confluent (approx. 2 ×
105 cells/well). Confluent cells were incubated for 6 d in
20 % FBS DMEM with or without lactogenic hormones
consisting of 10 μg/ml dexamethasone (Sigma), 10 μg/mL
bovine insulin (Sigma) and 10 μg/mL sheep prolactin
(Sigma) with medium renewal at every second day. Under
this condition, a cell line of bovine mammary epithelial cells
differentiate and express lactogenic markers such as α-
casein and α-lactalbumin in 7 d after the confluent cells are
induced to differentiate [24]. Approx. 2 mL of the medium
supernatant was collected as the media samples from each
of three wells in a culture plate per experiment, which was
repeated three times. A total of 4.8 mL of the media was
prepared as a mixture of the three well samples. For a
quantitative polymerase chain reaction (qPCR) analysis, the
cells were also collected after two washes with phosphate-
buffered saline (PBS), using RNA protect Cell Reagent
(Qiagen). The exosome samples in the culture media were
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then centrifugally collected using an ExoQuick-TC kit
(System Bioscience).

Microarray analysis of milk exosome miRNA
For the microarray analysis of milk exosomal miRNAs, we
extracted total RNA including miRNA from the samples
using the mirVana™miRNA isolation kit (Life Technologies),
and determined the RNA quantity and quality of the sam-
ples using an Experion™ automated electrophoresis system
with an RNA StdSens kit (Bio-Rad, Hercules, CA). The
RNA sample of exosomes from mixed milk of five cows
was applied to an Affymetrix GeneChip® miRNA 4.0 Array
(Affymetrix, Santa Clara, CA) that corresponds to miR-
Base ver.20 and comprehensively covers 203 organisms in-
cluding bovine (http://www.affymetrix.com/estore/catalog/
131473/AFFY/miRNA+Array#1_1). The signals of hybrid-
ized probes in the array were scanned with a GeneChip®
Scanner 3000 7G (Affymetrix). The scanned microarray
data were analyzed with Affymetrix® Expression Console™
Software (Affymetrix).

RNA preparation and cDNA synthesis of cell and the
culture media samples for qPCR
For miRNA qPCR analysis, total RNA including miRNA
was extracted from the exosomes of cells and the culture
media samples, using the mirVana™ miRNA isolation kit
(Life Technologies). cDNA for the qPCR of miRNAs was
synthesized from 250 ng of total RNA for the cell sam-
ples or from 9 μL of the final product of RNA prepar-
ation for the culture medium samples, using the
miScript II RT kit (Qiagen) at 37 °C for 60 min, and
then the enzyme was inactivated at 95 °C for 5 min.
For qPCR analysis of mRNA in cells, total RNA ex-

cluding miRNA was extracted using the RNeasy Plus
Mini Kit (Qiagen, Tokyo) and an RNase-Free DNase Set
(Qiagen). cDNA was synthesized from 1,000 ng of the
total RNA using a PrimeScript® II 1st strand cDNA
Synthesis Kit (Takara, Otsu, Japan). The resulting cDNA
solutions were diluted with sterile distilled water and
used as templates for qPCR.

Quantitative PCR (qPCR) analysis
The miRNA qPCR was performed using a CFX96 thermal
cycler (Bio-Rad) under the following program: first for
15 min at 95 °C, followed by 40 cycles of 15 s at 95 °C and
30 s at 60 °C, with the Thunderbird SYBR qPCR kit
(Toyobo, Tokyo) in combination with the miScript Primer
Assay for let-7b, miR-21-5p, miR-23b-3p, miR-25, miR-
26a, miR-30a, miR-103, miR-107, miR-148a, miR-155,
miR-182, miR-191, miR-200c, miR-221, miR-223, miR-
320a, miR-339a, and miR-375 (Qiagen). Cellular RNU6-
6P RNA (RNU6-6P) and exogenous cel-miR-39 (Qiagen)
were used as an internal control for cell samples and as a
spike-in control for medium samples, respectively. The

resulting values of qPCR for cellular and medium miRNAs
were normalized by those of RNU6-6P and cel-miR-39,
respectively. The results of miRNAs were quantified using
respective standard curves.
A qPCR of GAPDH, β- and κ-casein was performed

using the Thunderbird SYBR qPCR Mix (Toyobo) for
BMEC cell samples with ribosomal RNA 18 s (R18s) as
an internal control. The thermal cycling conditions used
were: 95 °C for 10 s, followed by 40 cycles of 95 °C for
5 s and 62 °C for 30 s. The melting program was 95 °C
for 10 s, 65 °C for 5 s and 95 °C for 50 s. A melting
curve analysis was used to confirm the specificity of the
amplification. The PCR primers used in this study were
as shown in Table 1 [24, 25]. Fold changes were deter-
mined by the threshold cycle (Ct). Fold changes of
miRNA expression were calculated using the 2−ΔCt

method, where ΔCt = (Ct target −Ct control) Sample [7].

Prediction and functional annotation of miRNA target
genes
The bioinformatic analysis was conducted as described
[21]. In brief, the miRNA target genes were predicted
using the TargetScan (Release 6.2, http://www.targetsca-
n.org/) [26]. The miRNA sequences applied to the ana-
lyses were of bovines. To classify the target genes
according to the functional annotation, we conducted a
gene ontology (GO) analysis on the target genes of differ-
entially expressed miRNAs between treatments with dexa-
methasone, insulin, and prolactin (DIP). In this study, the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID) bioinformatic resources (version 6.7,
http://david.abcc.ncifcrf.gov) [27] were applied to the po-
tential target genes with the setting bos taurus (domestic
cow) as the background species, to enrich characteristic
GO terms for the respective miRNA-mediated biological
process. Extraction of the terms was considered significant
when the Bonferroni probability value (PB) was < 0.05.

Statistical analysis
The expression data are shown as means ± SD and were
compared by statistical analyses with a significance level

Table 1 PCR primers used in this study

Target gene Sequence

GAPDH fw 5’-GGGTCATCATCTCTGCACCT-3’

rv 5’-GGTCATAAGTCCCTCCACGA-3’

β-Casein fw 5’-GTGAGGAACAGCAGCAAACA-3’

rv 5’-TTTTGTGGGAGGCTGTTAGG-3’

κ-Casein fw 5’-CCAGGAGCAAAACCAAGAAC-3’

rv 5’-TGCAACTGGTTTCTGTTGGT-3’

R18S fw 5’-CGGGGAGGTAGTGACGAAA-3’

rv 5’-CCGCTCCCAAGATCCAACTA-3’
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of P < 0.05. The comparisons between with and without
DIP treatment were carried out by the two-sided Stu-
dent’s t-test, using js-STAR 2012 software (ver. 2.0.6j;
http://www.kisnet.or.jp/nappa/software/star/index.htm).

Results
Composition of exosomal miRNAs in milk
According to the qualitative analysis of milk exosomal
RNAs, most of the RNAs composing milk exosomes
were small RNAs including miRNAs (Fig. 1). The results
of our microarray analysis showed that, of 783 bovine
miRNAs registered in the miRBase (ver. 20), a total of
257 miRNAs were detected in the milk exosomes. The
top 20 miRNAs in the milk exosome were let-7b
(12.7 %), miR-200c (10.9 %), miR-26a (8.8 %), let-7c
(7.5 %), let-7a-5p (6.3 %), miR-30a-5p (3.1 %), miR-320a
(2.7 %), miR-103 (2.5 %), miR-107 (2.2 %), let-7d (1.9 %),
miR-23-3p (1.6 %), miR-191 (1.6 %), miR-23a (1.6 %),
miR-20a (1.5 %), miR-1777b (1.5 %), miR-151-5p (1.4 %),
miR-24-3p (1.3 %), miR-320b (1.3 %), miR-200b (1.2 %),
and miR-141 (1.2 %) (Fig. 2).

MicroRNA expression in DIP-treated BMECs and the
culture medium
We investigated the changes in the generation of milk-
abundant miRNAs in BMECs during the DIP-induced
differentiation process. It has been shown that lactogenic
differentiation can be induced by addition of DIP to

BMEC culture [21, 28]. All FBS used was from a single
lot, to ensure that any effect of serum was consistent be-
tween treatments. No significant difference in expression
level of RNU6-6P or cel-miR-39 was observed between
DIP-treated and untreated cells or the culture media.
When BMECs were treated with DIP, the expressions of
GAPDH and the lactogenic differentiation markers,
namely β- and κ-casein, were elevated compared to
those of the untreated BMECs (P < 0.001, P < 0.001, and
P = 0.013, respectively) (Fig. 3), indicating that the
BMECs were induced to lactogenic differentiation.
In the DIP-treatment of BMECs, both the cellular and

extracellular expression of miRNAs were analyzed. The cel-
lular expression of miR-21-5p, miR-25, miR-26a, miR-223,
and miR-320a was lower in the DIP-treated BMECs than in
the untreated BMECs (P = 0.005, = 0.059, = 0.016, = 0.054,
and = 0.011, respectively), whereas that of the other miR-
NAs was not significantly changed by the treatment
(Fig. 4a). In contrast, the expressions of miR-155, miR-182,
miR-200c, and miR-339a in the BMEC culture medium
were lower in the DIP-treated BMECs than in the untreated
BMECs (P = 0.088, = 0.061, = 0.067, and = 0.017, respect-
ively) (Fig. 4b). In addition, it is especially unique that the
miR-148a expression in the medium was up-regulated in
the DIP-treated BMECs compared to that in the untreated
cells (P = 0.013).
We also estimated the ratio of miRNA in the medium

to that in the cells, to clarify the influence of

Fig. 1 Representative electropherogram of RNA samples prepared from milk exosomes of Holstein cows. The peaks of ribosomal-18 s (18 s) and -28 s
(28 s) RNA were at only a trace level compared to that of small RNA
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differentiation on the miRNA distribution between the
outside and the inside of the BMECs. The ratios of miR-
25, miR-103, miR-148a, and miR-223 were elevated (P =
0.062, = 0.025, < 0.001, and = 0.014, respectively) but those
of miR-107, miR-182, and miR-339a were reduced in the
DIP-treated BMECs (P = 0.057, = 0.022, and = 0.020, re-
spectively) in comparison to those in the untreated cells
(Fig. 4c). Intriguingly, among the miRNAs tested, the ele-
vated miR-148a expression and the reduced miR-339a ex-
pression in the BMEC culture media were consistent with
the expression ratio of the medium to the cells, indicating
that both the biogenesis and the secretion of those miR-
NAs were changed cooperatively.

Potential molecular events associated with microRNAs
that changed with DIP-treatment of BMEC
We further analyzed the predicted target genes of the
relevant miRNAs by using the functional annotation in
DAVID, to analyze the molecular events associated with
miRNAs that are affected by DIP-treatment in BMECs.
According to the results of our TargetScan analysis, a
total of 1,617 bovine genes are predicted as the targets
of significantly reduced miRNAs by DIP-treatment of
BMEC (miR-21-5p, miR-26a, and miR-320a). Of those
target genes, 1,382 genes identified in the DAVID program
were further applied to the functional annotation analysis,
which resulted in the extraction of the over-represented
GO terms such as the regulation of transcription, phos-
phorylation, the regulation of macromolecule metabolism,
and signaling pathways related to small GTP-binding pro-
tein and enzyme-linked receptor (PB < 0.05, Table 2).
The miR-148a was unique in that its expression in

BMEC culture medium was elevated by DIP-treatment of
the cells. A total of 630 bovine genes are predicted as the
targets of miR-148a. Of those target genes, we further ana-
lyzed 530 genes identified in the DAVID program by func-
tional annotation, which extracted relevant GO terms
such as the regulation of transcription, phosphorylation,
the regulation of macromolecule metabolism, and blood
vessel development (PB < 0.05, Table 3). Regarding miR-
339a, which showed significant down-regulation of its ex-
pression in the BMEC culture medium, the results of the
TargetScan analysis predicted a total of 177 genes includ-
ing MyoD, a master regulator of myogenesis, and B-cell
CLL/lymphoma 6 (BCL6) as the targets of miR-339a.
However, none of the significant molecular biological

Fig. 2 The microRNA composition in milk exosomes of Holstein cows. The microRNA (miRNA) names and the percentages of total miRNA
contents are indicated

Fig. 3 Quantitative PCR results of GAPDH and lactogenic markers
(β- and κ-caseins) in differentiated and undifferentiated BMECs.
*P < 0.05, *** P < 0.001 indicate the differences between the BMEC
cultures with (DIP+) and without lactogenic hormones (DIP−)
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terms were extracted by the GO analysis using the miR-
339a target genes.
Moreover, we also conducted bioinformatics analysis

on the relevant miRNAs, miR-103, miR-148a, and
miR-223, which showed an elevation of the medium/
cell ratios. Of the 1490 potential target genes of those
miRNAs, a total of 1121 bovine genes were used as
valid genes. The result of GO analysis indicated that
the target genes are associated with transcriptional
regulation of gene expression, post-translational modi-
fication, and blood vessel formation (Table 4).

Discussion
In the present study, to elucidate the generation and se-
cretion of miRNAs in BMEC culture, we focused on a
total of 18 milk-related miRNAs that were contained in
milk from Holstein cows. Of those, miR-7b, miR-21-5p,
miR-23-3p, miR-26a, miR-30a, miR-103, miR-107, miR-
148a, miR-200c, and miR-320a were among the top 30
most abundant miRNAs in the milk. The expression
levels of miR-25, miR-155, miR-182, miR-191, miR-221,
miR-223, and/or miR-375 have been reported to change
in the mammary gland tissues of cows [7], goats [8],

a

b

c

Fig. 4 Quantitative PCR results of miRNAs in differentiated and undifferentiated BMECs. a: Cellular miRNAs of BMECs. b: miRNAs in BMEC culture
media. c: The miRNA expression ratio of medium/cells. +P < 0.10; * P < 0.05, ** P < 0.01, and *** P < 0.001 indicate differences between BMEC
cultures with (DIP+) and without lactogenic hormones (DIP−) for each of the miRNAs
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milk from pigs [3], and rat milk whey [29] during lacta-
tion, and therefore we also analyzed these miRNAs.
As indicated by the elevated expression of lactogenic

markers (β- and κ-caseins) [1], we concluded that the
BMECs were induced into lactogenic differentiation by
the addition of DIP in the present study, though milk fat
and protein secretion were not determined. Neverthe-
less, this BMEC is able to not only express lactogenic
gene mRNAs but also secret milk proteins such as α-
casein by seven days after induction of differentiation

with DIP treatment [21, 30]. Another BMEC under DIP
treatment also can successfully differentiate in seven
days of lactogenic differentiation [28], indicating that
DIP treatment is able to induce functional lactogenic
differentiation of BMEC in vitro.
The lactation stage in which milk protein is accelerat-

ingly secreted is defined as ‘secretory activation’ [31], the
third stage of four functional differentiation stages of the
mammary gland [1]. In mice and rats, an increase in activ-
ity of lipid synthetic enzymes was observed in the second
stage [32]. This is followed by activation of the transcrip-
tion of milk protein genes in the third stage [33, 34], in
which prolactin is increasingly secreted from pituitary and
plays a pivotal role in initiation of lactation [1, 35]. Since
an increase in β- and κ- caseins expression was induced
by lactogenic hormones such as prolactin in the present
study, the process observed in the BMEC culture could be
a model of the third stage (secretory activation) that be-
gins at or around parturition, continuing at least to the
early phase of lactation [1]. The elevated expression level
of GAPDH in the BMEC culture might reflect an acceler-
ated glucose consumption to generate energy for milk
component production.

Table 2 Gene ontology terms enriched with predicted miR-21-5p,
miR-26a, and miR-320a target genes

Term Target
genes

Bonferroni

GO:0045449 ~ regulation of transcription 134 0.00001

GO:0051252 ~ regulation of RNA metabolic
process

105 0.00002

GO:0006468 ~ protein amino acid
phosphorylation

66 0.00002

GO:0006355 ~ regulation of transcription, DNA-
dependent

102 0.00007

GO:0006796 ~ phosphate metabolic process 82 0.00026

GO:0006793 ~ phosphorus metabolic process 82 0.00026

GO:0016310 ~ phosphorylation 69 0.00068

GO:0048598 ~ embryonic morphogenesis 26 0.00141

GO:0007242 ~ intracellular signaling cascade 65 0.00269

GO:0010604 ~ positive regulation of
macromolecule metabolic process

46 0.00288

GO:0007167 ~ enzyme linked receptor protein
signaling pathway

27 0.00632

GO:0035295 ~ tube development 22 0.00687

GO:0010628 ~ positive regulation of gene
expression

35 0.01255

GO:0007264 ~ small GTPase mediated signal
transduction

30 0.01361

GO:0051173 ~ positive regulation of nitrogen
compound metabolic process

37 0.01550

GO:0031328 ~ positive regulation of cellular
biosynthetic process

39 0.01838

GO:0045935 ~ positive regulation of nucleobase,
nucleoside, nucleotide and nucleic acid
metabolic process

36 0.01985

GO:0009891 ~ positive regulation of biosynthetic
process

39 0.02411

GO:0045941 ~ positive regulation of transcription 33 0.03073

GO:0019941 ~modification-dependent protein
catabolic process

35 0.03719

GO:0043632 ~modification-dependent
macromolecule catabolic process

35 0.03719

GO:0010557 ~ positive regulation of
macromolecule biosynthetic process

37 0.03929

GO:0006357 ~ regulation of transcription from
RNA polymerase II promoter

37 0.04292

Table 3 Gene ontology terms enriched with predicted miR-148a
target genes

Term Target
genes

Bonferroni

GO:0045449 ~ regulation of transcription 67 0.00044

GO:0010628 ~ positive regulation of gene
expression

23 0.00096

GO:0051252 ~ regulation of RNA metabolic
process

53 0.00159

GO:0045941 ~ positive regulation of transcription 22 0.00171

GO:0006355 ~ regulation of transcription, DNA-
dependent

52 0.00218

GO:0045935 ~ positive regulation of nucleobase,
nucleoside, nucleotide and nucleic acid
metabolic process

23 0.00280

GO:0001568 ~ blood vessel development 16 0.00430

GO:0051173 ~ positive regulation of nitrogen
compound metabolic process

23 0.00462

GO:0001944 ~ vasculature development 16 0.00591

GO:0031328 ~ positive regulation of cellular
biosynthetic process

23 0.01828

GO:0009891 ~ positive regulation of biosynthetic
process

23 0.02192

GO:0010604 ~ positive regulation of
macromolecule metabolic process

25 0.02990

GO:0010557 ~ positive regulation of
macromolecule biosynthetic process

22 0.03007

GO:0001525 ~ angiogenesis 11 0.04250

GO:0006796 ~ phosphate metabolic process 40 0.04491

GO:0006793 ~ phosphorus metabolic process 40 0.04491
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We hypothesized that generation and secretion of
miRNAs in BMEC could be promoted during lactogenic
differentiation. Intriguingly, according to the miRNA
qPCR results, it is likely that most of cellular miRNAs
including miR-21-5p, miR-26a, and miR-320a in BMEC
culture are down-regulated after DIP treatment. Thus, it
is suggested that down-regulation of those miRNAs
could be associated with release of translational regula-
tion of lactogenic genes in BMEC. The expression level
of miR-21-5p was reported to be up-regulated in bovine
MGT at 7 d postpartum compared to −30 d prepartum

[9], whereas its level in porcine milk analyzed by qPCR
was down-regulated at 7–14 d of the lactation period
from day 0 but was followed by a marked increase at the
21 d [3]. In addition, miR-21-5p was at a constant level
in rat whey [29], and changed both upward and down-
ward during lactation [2]. Thus, miR-21-5p expression
may be affected by period of lactation, species, and/or
differences in cell behavior between in vivo and in vitro.
The expression level of miR-26a in bovine MGT was

down-regulated during lactation [7], which supports the
present finding of a down-regulation of miR-26a in
BMEC treated with DIP. The reduced expression of
miR-26a in BMECs during differentiation could account
for that in bovine MGT during lactation.
Bioinformatic analysis using target genes of miR-21-5p,

miR-26a, and miR-320a predicted that the molecular bio-
logical events with which the target genes of those miR-
NAs were associated are transcriptional regulation,
protein phosphorylation, phosphate metabolic process,
embryonic morphogenesis, tube development, and posi-
tive regulation of biosynthetic process. All of these pre-
dicted molecular biological events could be associated
with the formation of a ductal and lobulo-aveolar struc-
ture and with the acceleration of the synthesis of milk in-
gredients during the secretory differentiation of mammary
glands and lactation. These terms of biological process
suggest that the down-regulations of miR-21-5p, miR-26a,
and miR-320a in BMECs may have roles in the mammary
gland differentiation and lactation of dairy cows.
We also observed that the expression level of miR-

148a in the culture medium of DIP-treated BMEC was
higher than that in the untreated cell culture medium in
the present study, although its expression in the cells did
not change with DIP treatment. Intriguingly, miR-148a
is unique in that its elevated expression in milk and
MGT during lactation has been consistently reported [2,
3, 7]. In addition, the medium/cell ratio of miR-148a ex-
pression was up-regulated with induction of lactogenic
differentiation in BMECs in this study. These results
suggest that the increase in miR-148a expression in milk
during lactation may be due to the elevated secretion of
miR-148a by differentiated mammary epithelial cells. As
well as miR-148a, miR-103 and miR-223 expression in
BMEC culture media was also elevated by DIP-
treatment, suggesting secretion of miR-103 and miR-223
in BMEC was also enhanced by lactogenic hormones.
The role of miR-148a secreted in milk remains un-

known, however. It was reported that miR-148a pro-
motes myogenic differentiation by targeting the Rho-
associated coiled-coil containing protein kinase 1
(ROCK1) gene [36]. In addition, miR-148a is associated
with osteogenic differentiation [37] and angiogenesis in
breast cancer by targeting not only v-erb-b2 erythro-
blastic leukemia viral oncogene homolog 3 (ERBB3) [38]

Table 4 Gene ontology terms enriched with predicted miR-103,
miR-148a, and miR-223 target genes

Term Target
genes

Bonferroni

GO:0045449 ~ regulation of transcription 127 1.51E-08

GO:0051252 ~ regulation of RNA metabolic
process

100 1.43E-07

GO:0006355 ~ regulation of transcription, DNA-
dependent

97 6.19E-07

GO:0045941 ~ positive regulation of transcription 37 9.14E-06

GO:0010628 ~ positive regulation of gene
expression

38 9.83E-06

GO:0006468 ~ protein amino acid
phosphorylation

60 1.34E-05

GO:0045935 ~ positive regulation of nucleobase,
nucleoside, nucleotide and nucleic acid
metabolic process

39 1.72E-05

GO:0006796 ~ phosphate metabolic process 76 2.98E-05

GO:0006793 ~ phosphorus metabolic process 76 2.98E-05

GO:0051173 ~ positive regulation of nitrogen
compound metabolic process

39 4.02E-05

GO:0010557 ~ positive regulation of
macromolecule biosynthetic process

40 4.04E-05

GO:0031328 ~ positive regulation of cellular
biosynthetic process

41 4.49E-05

GO:0009891 ~ positive regulation of biosynthetic
process

41 6.27E-05

GO:0010604 ~ positive regulation of
macromolecule metabolic process

45 8.95E-05

GO:0001525 ~ angiogenesis 18 4.58E-04

GO:0016310 ~ phosphorylation 62 5.84E-04

GO:0001568 ~ blood vessel development 24 8.85E-04

GO:0001944 ~ vasculature development 24 0.00141236

GO:0045944 ~ positive regulation of transcription
from RNA polymerase II promoter

26 0.00405696

GO:0048514 ~ blood vessel morphogenesis 20 0.01132062

GO:0045893 ~ positive regulation of transcription,
DNA-dependent

27 0.02355478

GO:0051254 ~ positive regulation of RNA
metabolic process

27 0.02355478

GO:0006357 ~ regulation of transcription from
RNA polymerase II promoter

34 0.02446326
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but also DNA methyltransferase-1 (DNMT1), insulin-
like growth factor-1 receptor (IGF-1R), and insulin
receptor substrate-1 (IRS-1) [39]. Extracellular miRNAs
secreted into body fluids such as milk and blood are
used in cell–cell communication [40, 41]; for example,
colostrum-derived miRNAs are taken up in vitro by
macrophages and modulate their immune activities, such
as migration and cytokine secretion [42]. The miR-148a
that is secreted by BMECs into milk may thus affect its
target gene expression in the recipient cells of the se-
creted miRNA, such as that in muscles and bones [43].
Bioinformatic analysis of miR-148a resulted in the ex-
traction of GO terms associated with the regulation of
transcription, angiogenesis, and the phosphate metabolic
process. The genes related to these events in potential
recipient cells of miR-148a may also be affected by the
miR-148a in milk.
The expression level of miR-339a in the BMEC culture

medium was reduced by DIP treatment in this study. The
known role of miR-339a is limited to cancer-related func-
tions such as the down-regulation of BCL6 expression
[44]. BCL6 is essential for the promotion of mammary
epithelial cell survival [45]. In the present study, even
though significant molecular events were not extracted by
the GO analysis, MyoD and BCL6 were predicted as the
targets. Although the biological function of miR-339a in
milk remains unknown, its reduced expression in the
BMEC culture medium may indicate a release of the sup-
pression of the target gene expression in the exosome re-
cipient cells in skeletal muscle and mammary gland
tissues.

Conclusion
We investigated changes in both cellular and extracel-
lular miRNAs extracted from BMEC in cell culture
under the influence of lactogenic hormones. In the
qPCR analyses of 18 miRNAs that were abundant in
milk, the expressions of miR-21-5p, miR-26a, and
miR-320a were significantly lower in the DIP-treated
cells than in the untreated cells. In a cell culture
medium, miR-339a expression was lower and miR-
148a expression was higher in the DIP-treated culture
than in the untreated culture. The results of a bio-
informatic analysis suggested that the miRNAs down-
regulated in the BMECs were associated with molecu-
lar biological events that are essential to mammary
gland development and maturation. The elevated
miR-148a level during BMEC differentiation may be
associated with its increase in milk during the lacta-
tion period of cows, though secretion of milk proteins
is not determined in the present study.
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