
Lin et al. 
Journal of Animal Science and Biotechnology          (2022) 13:121  
https://doi.org/10.1186/s40104-022-00773-5

RESEARCH

Maternal organic selenium supplementation 
during gestation enhances muscle fiber area 
and muscle fiber maturation of offspring 
in porcine model
Yan Lin1,2†, Hui Yan1,2†, Lei Cao1,2, Daolin Mou1,2, Dajiang Ding1,2, Binting Qin1,2, Lianqiang Che1,2, 
Zhengfeng Fang1,2, Shengyu Xu1,2, Yong Zhuo1,2, Jian Li1,2, Jianping Wang1,2, Chao Huang3, Yuanfeng Zou3, 
Lixia Li3, De Wu1,2* and Bin Feng1,2*   

Abstract 

Background: Organic selenium supplementation during gestation improves the antioxidant status and reproduc-
tive performance of sows and increases the antioxidative capacity of the intestines of their offspring. This study was 
conducted to investigate the effect of maternal basel diet (control) supplemented with an organic Se, 2-hydroxy-
4-methylselenobutanoic acid (HMSeBA), or inorganic sodium selenite  (Na2SeO3) during gestation on the antioxidant 
status and development of muscle in newborn and weaned piglets. Newborn piglets before colostrum intake and 
weaned piglets were selected for longissimus dorsi (LD) muscle collection and analysis.

Results: The results showed that maternal HMSeBA supplementation increased the muscle area and content of Se in 
the LD muscle of newborn piglets, improved gene expression of selenoproteins, and decreased oxidative status in the 
LD muscle of both newborn and weaned piglets compared with the control. The expression of muscle development-
related genes of newborn piglets in the HMSeBA group was lower than in the control group, whereas the expression 
of MRF4 in weaned piglets was higher in the HMSeBA group than in the control and  Na2SeO3 groups. In addition, 
HMSeBA supplementation decreased the mRNA expressions of myosin heavy chains (MyHC) IIx and MyHC IIb and the 
percentage of MyHC IIb; increased the expression of PGC-1α in the LD muscle of newborn piglets; increased the gene 
expression of MyHC IIa; and decreased the protein expression of slow MyHC and the activity of malate dehydrogenase 
in the LD muscle of weaned piglets compared with the control group.

Conclusions: Maternal HMSeBA supplementation during gestation can improve the antioxidative capacity of the 
muscle of their offspring and promote the maturity of muscle fibres in weaned offspring.
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Background
Meat quality is mainly determined by the type of muscle 
fibre and is positively correlated with the oxidative capac-
ity of muscle fibres [1, 2]. Dietary supplementation with 
organic Se can significantly increase Se deposition in the 
muscles [3, 4], which in turn increases muscle antioxi-
dant levels [3]. Several reports have shown that feeding 
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with organic Se improves the amount of Se transferred 
from sows to their progeny [5, 6], thereby enhancing the 
antioxidative capacity of their offspring [7]. Our previ-
ous studies found that maternal supplementation with 
2-hydroxy-4-methylselenobutanoic acid (HMSeBA) dur-
ing gestation increased the plasma concentration of total 
Se and improved the antioxidative capacities of sows and 
their offspring [8]. However, little is known about the 
effects of Se source on muscle development in offspring.

Skeletal muscle accounts for 40%–50% of body weight 
[9]. Muscle development is regulated by several tran-
scription factors. The MyoD family of myogenic regula-
tory factors (MRFs) are master regulators of myogenic 
determination and differentiation, while postpartum sat-
ellite cells are determined by paired box gene 7 (Pax7) 
[10]. In addition, myostatin (MSTN) inhibits muscle 
development [11], while mammalian target of rapamycin 
(mTOR) promotes muscle hypertrophy [12]. Insulin-like 
growth factors promote myogenesis and postnatal mus-
cle growth by accelerating protein synthesis and inhibit-
ing protein degradation [13]. Further, Se is involved in 
the differentiation of chicken embryonic myoblasts [14] 
and improves the fatty acid composition in poultry mus-
cle tissues [15]. Although Se has an effect on muscle pH 
and drip loss in growing pigs, the effect of maternal Se 
supply on offspring muscle development is not clear and 
is worth exploring.

In most mammals, the number of muscle fibres is 
determined at birth. Thus, the increase in postnatal 
skeletal muscle mass results from an increase in muscle 
fibre size (hypertrophy) [16]. However, the composition 
of muscle fibre type is continuously changing postna-
tally [17], wherein days 1 to 14 are the critical periods 
for transformation. Based on the characteristics of its 
contraction, skeletal muscle fibre types are classified 
as slow-twitch (Type I) fibers with MyHC I expression 
and fast-twitch (Type II) fibers. Fast fibres are divided 
into type IIa (fast-twitch oxidative type) with MyHC IIa 
expression, type IIx (fast-twitch oxidative-glycolytic type) 
with MyHC IIx expression, and type IIb (fast-twitch gly-
colytic type) with MyHC IIb expression [18]. Muscle fibre 
types can transform between types I and II. Therefore, 
the objective of this study was to explore whether mater-
nal addition of HMSeBA during gestation could improve 
muscle development, selenium deposition, and antioxi-
dant status in the muscles of their offspring.

Material and methods
Experimental design and animal management
Forty-five Landrace Yorkshire sows after insemina-
tion were randomly divided into three groups accord-
ing to their body weight (239.25 ± 8.54 kg) and backfat 
thickness (13.90 ± 1.28  mm), and received one of the 

following diets during gestation: basal diet (Control, 
n = 15), a basal diet supplemented with sodium sele-
nite  (Na2SeO3) at 0.3 mg Se per kg  (Na2SeO3, n = 15), 
and HMSeBA at 0.3 mg Se per kg (HMSeBA, n = 15). 
The experimental diets were formulated to meet the 
nutrient requirements of gestating sows as recom-
mended by NRC [19] (Table  1), except for that of 
selenium. All sows were fed the same lactation diet. 
HMSeBA (hydroxy-analogue of selenomethionine, 
Selisseo®, 2% Se) was provided by Adisseo France 
S.A.S. and  Na2SeO3 (1% Se)  was obtained from 
Chengdu Shuxing Feed Co. Ltd (Chengdu, Sichuan, 
China).

Table 1 Composition and nutrient levels of the basal diet (as-fed 
basis)

a Vitamin and mineral mixture for gestation sows supplied the following 
amounts of vitamins/kg and minerals/kg of complete diet: 6000 IU vitamin A; 
1500 IU vitamin  D3; 80 IU vitamin E; 2.6 mg vitamin  B1; 6.5 mg vitamin  B2; 3.9 mg 
vitamin  B6; 15 μg vitamin  B12; 26 mg niacin; 1.3 mg folate; 120 mg iron; 20 mg 
copper; 120 mg zinc; 30 mg manganese; 0.3 mg iodine. Control, 0 mg selenium/
kg (analysed value is 0.13 mg selenium/kg);  Na2SeO3, 0.3 mg selenium/
kg (analysed value is 0.41 mg selenium/kg); HMSeBA, 0.30 mg selenium/kg 
(analysed value is 0.46 mg selenium/kg)
b Vitamin and Mineral mixture for lactation sows supplied the following amounts 
of vitamins/kg and minerals/kg of complete diet: 6000 IU vitamin A; 1200 IU 
vitamin  D3; 50 IU vitamin E; 1.0 mg vitamin  B1; 3.6 mg vitamin  B2; 1.8 mg vitamin 
 B6; 12.5 μg vitamin  B12; 20 mg niacin; 12.5 mg pantothenic acid; 2.0 mg folacin; 
120 mg iron; 20 mg copper; 120 mg zinc; 30 mg manganese; 0.3 mg selenium; 
0.3 mg iodine
c Calculated value

Item Gestation Lactation

Ingredients, %

 Corn 63.53 62.89

 Soybean meal 14.50 22.13

 Soybean oil 2.00

 Wheat bran 18.00 6.00

 Fish meal 2.60

 L-Lysine HCl (98%) 0.05 0.27

 D, L- Methionine (99%) 0.02 0.13

 L-Threonine (98.5%) 0.05

 Limestone 1.15 0.98

 Dicalcium phosphate 1.65 1.50

 Choline chloride (50%) 0.15 0.15

 Sodium chloride 0.40 0.40

 Sodium bicarbonate 0.40

 Vitamin and mineral premix 0.50a 0.55b

 Total 100.00 100.00

Nutrient  levelc

 Digestible energy, Mcal/kg 3.04 3.27

 Crude protein, % 14.03 17.50

 Standard ideal digestible-Lysine, % 0.56 0.98

 Total calcium, % 0.88 0.90

 Total phosphorus, % 0.71 0.70
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Sample collection
On the day of birth, 10 piglets from each group (male) 
were anaesthetised and sacrificed before suckling. Sam-
ples of the longissimus dorsi (LD) muscle from the eighth 
to tenth rib were collected. The remaining piglets were 
breastfed until they were weaned. On the day of weaning, 
six piglets from each group (male) were slaughtered and 
the LD muscle was collected and stored at –80 °C.

Muscle fibre histological analysis
Muscle fibre morphology in pigs was determined by 
staining the muscle fibres using the classical ATPase 
method of Guth et  al.  [20]. All sections were photo-
graphed using a digital microscope (Nikon) based on 
five consecutive random areas. At least 150 muscle fib-
ers were randomly selected by Image-Pro Plus 6.0 Image 
analysis software (Media Cybernetics Inc., Bethesda, MD, 
USA), and the diameter and area of muscle fibers in the 
collected images were measured [21]. The number and 
cross-sectional area of the muscle fibres were calculated 
using the software programme Image-Plus 6.0, and mus-
cle density was calculated based on the number of muscle 
fibres/muscle areas.

Measurement of selenium concentration
The Se level in the muscle was analysed according to the 
method of Chao et  al. [3]. Briefly, approximately 0.5  g 
of muscle sample was digested with 10  mL  HNO3 and 
2 mL  H2O2 in a microwave. The solution was then heated 
and treated with 6 mol/L HCl. A reagent blank test was 
simultaneously performed. The total Se content was 
determined using hydride atomic fluorescence spectrom-
etry (AFS-9230, Beijing Auspicious Day Instrument Co., 
LTD, Beijing, China) [3].

Gene expression and muscle type
Muscle tissue powder was homogenised in TRIzol rea-
gent (Invitrogen, Shanghai, China), then RNA was 
extracted according to the manufacturer’s instructions 
and RNA concentration was determined. The expression 
changes of genes were validated by a SYBR-based High-
Specificity miRNA qRT-PCR Detection kit (TaKaRa 
Biotechnology Co., Ltd., Dalian, China) on the Applied 
Biosystems 7900HT Real-Time PCR Detection Sys-
tem (Applied Biosystems, Carlsbad, USA). Real-time 
PCR data were analysed using the  2-∆∆Ct method, with 
GAPDH as the reference. The primer sequences are listed 
in Table 2.

According to the ratio between the mRNA expression 
of each myosin heavy chain subtype and type IIx mRNA 
(referred to as 1), the proportion of each gene in the total 
was calculated to obtain the proportion of muscle fibre 

type. The proportion of MyHC I, MyHC IIa, MyHC IIb, 
and MyHC IIx mRNA (%) was calculated to represent the 
proportion of slow oxidation, fast oxidation, fast fermen-
tation, and intermediate type muscle fibres, respectively.

Analysis of metabolic enzyme activities
The activities of succinic dehydrogenase (SDH), malate 
dehydrogenase (MDH), and lactate dehydrogenase 
(LDH) in the LD muscle were measured using the assay 

Table 2 Primer sequences for the target and reference genes

Genes Primer Sequence (5’ to 3’) Accession no.

MYHCI Forward GTT TGC CAA CTA TGC TGG GG AB053226.1

Reverse TGT GCA GAG CTG ACA CAG TC

MYHCIIa Forward CTC TGA GTT CAG CAG CCA TGA AB025260.1

Reverse GAT GTC TTG GCA TCA AAG GGC 

MYHCIIx Forward TTG ACT GGG CTG CCA TCA AT AB025262.1

Reverse GCC TCA ATG CGC TCC TTT TC

MYHCIIb Forward GAG GTA CAT CTA GTG CCC T AB025261.1

Reverse GCA GCC TCC CCA AAA ATA GC

GPX1 Forward GAT GCC ACT GCC CTC ATG A AF532927

Reverse TCG AAG TTC CAT GCG ATG TC

GPX2 Forward AGA ATG TGG CCT CGC TCT GA DQ898282

Reverse GGC ATT GCA GCT CGT TGA G

GPX3 Forward TGC ACT GCA GGA AGA GTT TGAA AY368622

Reverse CCG GTT CCT GTT TTC CAA ATT 

GPX4 Forward TGA GGC AAG ACG GAG GTA AACT NM_214407

Reverse TCC GTA AAC CAC ACT CAG CAT ATC 

SELP Forward AAC CAG AAG CGC CAG ACA CT EF113596

Reverse TGC TGG CAT ATC TCA GTT CTC AGA 

TXNRD1 Forward GAT TTA ACA AGC GGG TCA TGGT AF537300

Reverse CAA CCT ACA TTC ACA CAC GTT CCT 

TXNRD2 Forward TCT TGA AAG GCG GAA AAG AGAT GU181287

Reverse TCG GTC GCC CTC CAG TAG 

SELW Forward CAC CCC TGT CTC CCT GCA T NM_213977

Reverse GAG CAG GAT CAC CCC AAA CA

SEPHS2 Forward TGG CTT GAT GCA CAC GTT TAA EF033624

Reverse TGC GAG TGT CCC AGA ATG C

SELO Forward CTT CCG ACC CCA GAT GGA T AK236851

Reverse GGT TCG ACT GTG CCA GCA T

SELH Forward TGG TGG AGG AGC TGA AGA AGTAC HM018602

Reverse CGT CAT AAA TGC TCC AAC ATCAC 

DIO1 Forward CAT GGC CAA GAA CCC TCA CT AY533206

Reverse CCA GAA ATA CTG GGC ACT GAAGA 

DIO2 Forward CGC TGC ATC TGG AAG AGC TT AY533207

Reverse TGG AAT TGG GTG CAT CTT CA

DIO3 Forward TGA AGT GGA GCT CAA CAG TGATG AY533208

Reverse TGT CGT CAG ACA CGC AGA TAGG 

GAPDH Forward ACA CTG AGG ACC AGG TTG TG NM_001206359

Reverse GAC GAA GTG GTC GTT GAG GG
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kits purchased from Nanjing Jiancheng Bioengineering 
Institute (Nanjing, China) and the protocol followed the 
manufacturer’s instructions.

Analysis of antioxidant enzyme activity 
and malondialdehyde content
The enzyme activities of total superoxide dismutase 
(T-SOD), glutathione peroxidase (GSH-Px) and cata-
lase (CAT), total antioxidant capability (T-AOC), and 
malondialdehyde (MDA) level in the LD muscle were 
determined according to the manufacturer’s instructions 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China).

Western blot
Western blotting was performed as previously reported 
[22]. LD muscle samples were homogenised in RIPA lysis 
buffer (Beyotime biotechnology, Shanghai, China) con-
taining a protease inhibitor (Roche, Shanghai, China). 
Proteins were separated on 10% SDS–PAGE gel and 
then were transferred onto a PVDF membrane (Bio-Rad, 
Shanghai, China). The membrane was blocked with 5% 
skimmed milk for 1  h at room temperature, and then 
incubated with the respective primary antibody over-
night at 4 °C. Anti-slow MyHC (Sigma, Cat. No. M8421), 
anti-fast MyHC (Sigma, Cat. No. M4276), PGC-1α 
(Affinity Biosciences, Cat. No. AF5395) and GAPDH 
(Absin, Cat. No. abs132004) were used. The membranes 
were washed six times, and subsequently incubated 
with secondary antibodies (CST) (1:2000 dilution in 5% 
milk/1 × TBST) for 1 h. Proteins were detected using an 
ECL reagent (Bio-Rad, Shanghai, China) on a Molecular 
Imager ChemiDoc XRS + System (Bio-Rad). The western 
blots were quantified using the ImageJ software (National 
Institutes of Health).

Statistical analysis
Data were analysed using one-way ANOVA procedure of 
the SPSS software (version 21.0; SPSS Inc., Chicago, IL, 
USA). Duncan’s multiple range test was used to compare 
the differences between the groups with normally distrib-
uted data, while the data without a normal distribution 
were analysed using non-parametric analysis. Results 
are presented as mean ± standard error (SE). Differences 
were recognised as significant when P < 0.05, and a ten-
dency was considered when 0.05 ≤ P < 0.10.

Results
Maternal organic Se supplementation increased 
the muscle area in LD muscle of weaning piglets
In this study, maternal organic Se supplementation 
increased the muscle area of the offspring, while there 
was no effect on muscle density (Fig. 1).

Maternal organic Se supplementation increased 
the content of Se in LD muscle of newborn piglets
  Compared to that in the control and  Na2SeO3 groups, 
maternal HMSeBA supplementation during gestation 
increased Se content in the LD muscle of newborn 
piglets (Table  3). Compared with the control group, 
maternal HMSeBA supplementation significantly 
reduced birth weight (P < 0.05) but had no effect on the 
weight or weight of LD as a percentage of body weight 
in newborn and weaned piglets. The body weights of 
the piglets were similar between the three groups at 
weaning (Table 3).

Maternal organic Se supplementation changed 
the expression of muscle development‑related genes 
in offspring
Compared to the control group, maternal HMSeBA and 
 Na2SeO3 supplementation decreased the mRNA lev-
els of Myf5, MyoD, MyoG, and Pax7 (P < 0.05), whereas 
only maternal  Na2SeO3 supplementation reduced 
the expression of MRF4 in newborn piglets (P < 0.05) 
(Fig. 2A). Maternal organic Se supplementation during 
gestation decreased the expression of mTOR compared 
to that in the  Na2SeO3 group (P < 0.05) (Fig. 2A). More-
over, in weaned piglets, maternal HMSeBA supplemen-
tation increased the expression of MRF4 compared 
with that in the  Na2SeO3 and control groups (P < 0.05) 
(Fig. 2B).

Maternal organic Se supplementation during gestation 
changed muscle fibre type in offspring
The mRNA levels of MyHC I, MyHC IIa, MyHC IIb, 
and MyHC IIx in the LD muscle of newborn piglets 
were analysed. The results showed that, compared with 
the control group, maternal HMSeBA supplementa-
tion decreased the mRNA expression of MyHC IIb and 
MyHC IIx (P < 0.05) and increased the expression of 
PGC-1α, while maternal  Na2SeO3 supplementation only 
decreased the mRNA expression of MyHC IIb (Fig. 3A). 
In addition, the percentage of MyHC IIb fibres was 
reduced in both the  Na2SeO3 and HMSeBA groups com-
pared with the control group (P < 0.05) (Fig.  3B). Addi-
tionally, the protein level of PGC-1α was increased in 
the HMSeBA group when compared with the control 
and  Na2SeO3 groups (P < 0.05), whereas there was no dif-
ference in the protein expression of slow MyHC and fast 
MyHC (Fig. 3C, D).

In weaned piglets, maternal HMSeBA supplementation 
increased the mRNA level of MyHC  IIa compared with 
that in the control group (P < 0.05) (Fig.  3E). However, 
maternal HMSeBA supplementation did not change the 
percentage of MyHC I, MyHC IIa, MyHC IIb, or MyHC 
IIx (Fig. 3F). Piglets from the HMSeBA group had lower 
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slow MyHC and PGC-1α levels than piglets from the 
control group (P < 0.05), while piglets from the  Na2SeO3 
group had higher slow MyHC and fast MyHC and lower 
PGC-1α levels than piglets from the control group 
(Fig. 3G, H).

Effects of maternal organic Se supplementation 
during gestation on the activities of metabolic enzymes 
in the LD muscle of the offspring
The activities of LDH and MDH in the LD muscle of new-
born piglets were lower (P < 0.05) in the HMSeBA group than 

Fig. 1 Maternal organic Se supplementation during gestation increased muscle fibre area in weaning piglets. A Muscle histology. B The muscle 
density in weaning piglets (n = 6). C Muscle fibre area in weaning piglets (n = 6). Data are presented as means ± SE. a,bP < 0.05 between different 
superscripts

Table 3 Effect of maternal organic selenium supplementation during gestation on the weight and selenium content of offspring’s LD 
muscle

LD Longissimus dorsi, BW Body weight. Data were expressed as the mean ± SE
a,b P < 0.05 between different superscripts within the same line

Item Treatment P‑value

Control Na2SeO3 HMseBA

Newborn piglets (n = 10)

  Birthweight, kg 1.57 ± 0.04b 1.49 ± 0.07ab 1.36 ± 0.04a 0.030

  Weight of LD, g 13.49 ± 0.64 12.60 ± 0.94 11.59 ± 0.72 0.244

  Weight of LD:BW, % 0.85 ± 0.02 0.84 ± 0.03 0.84 ± 0.03 0.825

  Selenium content, mg/kg 0.068 ± 0.006a 0.051 ± 0.002a 0.139 ± 0.006b 0.000

Weaned piglets (n = 6)

  Body weight, kg 5.70 ± 0.31 5.80 ± 0.16 5.42 ± 0.12 0.221

  Weight of LD, g 74.28 ± 7.21 69.59 ± 3.43 64.74 ± 2.12 0.391

  Weight of LD:BW, % 1.29 ± 0.06 1.20 ± 0.03 1.20 ± 0.03 0.247



Page 6 of 12Lin et al. Journal of Animal Science and Biotechnology          (2022) 13:121 

in the  Na2SeO3 group (Fig.  4A). In addition, MDH activity 
in weaned piglets was lower (P < 0.05) in both the HMSeBA 
group and  Na2SeO3 group than in the control group (Fig. 4B).

Organic Se supplementation increased antioxidation 
indicators in LD muscle of offspring
Newborn piglets from the HMSeBA group had higher 
muscle GSH-Px activity and lower MDA content 

(P < 0.05) than newborn piglets from the  Na2SeO3 
and control groups and had higher T-SOD activity 
(P < 0.05) than newborn piglets from the control group 
(Table 4). Besides, the MDA content in the LD muscle 
of weaned piglets was lower (P < 0.05) in the HMSeBA 
group than in the control and  Na2SeO3 groups 
(Table 4).

Fig. 2 Maternal organic Se supplementation during gestation changed the expression of muscle development-related genes in offspring. A The 
expression of muscle development-related genes in newborn piglets (n = 10). B The expression of muscle development-related genes in weaned 
piglets (n = 6). Myf5, myogenic factor 5; MyoD, myogenic differentiation antigen; MyoG, myogenin; MRF4, myogenic regulatory factor 4; Pax7, paired 
box 7; MSTN, Myostatin; IGF1, insulin-like growth factor 1; IGF 1R, IGF receptor type 1; IGFBP5, insulin-like growth factor-binding protein-5; mTOR, 
mammalian target of rapamycin. Data are presented as means ± SE. a,bP < 0.05 between different superscripts within the same gene

(See figure on next page.)
Fig. 3 Effect of maternal HMSeBA supplementation during gestation on the expression of muscle fiber type-related genes in the LD muscle of 
offspring. A The expression of muscle fiber type-related genes in newborn piglets (n = 10). B The percentage of muscle fiber type in newborn 
piglets (n = 10). C The protein levels of slow MyHC, fast MyHC and PGC-1α in newborn piglets. D Quantification for proteins of newborn piglets. 
E The expression of muscle fiber type-related genes in weaned piglets (n = 6). F The percentage of muscle fiber type in weaned piglets (n = 6). G 
The expression of slow MyHC, fast MyHC and PGC-1α proteins in weaned piglets. H Quantification for proteins of weaned piglets. MyHC I, myosin 
heavy chain type1; MyHC IIa, myosin heavy chain type 2a; MyHC IIb, myosin heavy chain type 2b; MyHC IIx, myosin heavy chain type 2x; PGC-1a, 
peroxisome proliferator-activated receptor gamma coactivator-1 alpha; GAPDH, glyceraldehyde 3-phosphate dehydrogenase. Data are presented as 
means ± SE. a,b,cP < 0.05 between different superscripts within the same gene or protein
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Fig. 3 (See legend on previous page.)
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Maternal organic Se supplementation regulated 
the expression of selenoprotein genes in LD muscle 
of offspring
We then analysed the mRNA levels of selenoproteins in 
the LD muscle. Results showed that maternal HMSeBA 
supplementation during gestation increased the mRNA 
expression of GPX1 and decreased the mRNA expression 
of SEPHS2 and DIO2 (P < 0.05) compared to the control 
group in the LD muscle of newborn piglets (Fig.  5A). 
Besides, the mRNA expression of GPX1 and GPX3 was 
higher (P < 0.05) and the mRNA expression of DIO2 was 
lower (P < 0.05) in the newborn piglets of the  Na2SeO3 
group than in the control group (Fig. 5A).

In the LD muscle of weaned piglets, maternal HMSeBA 
supplementation increased the expression of SEPHS2 
(P < 0.05) while  Na2SeO3 supplementation increased the 
expression of GPX1 (P < 0.05) compared to the control 
group. Both HMSeBA supplementation and  Na2SeO3 

supplementation decreased the expression of GPX3 
(P < 0.05) compared to the control group (Fig. 5B). Com-
pared with the  Na2SeO3 group, maternal HMSeBA sup-
plementation increased the expression of SELP and 
SELW (P < 0.05) (Fig. 5B).

Discussion
Although there have been many studies on Se nutri-
tion, there is little research on the effect of maternal 
Se nutrition on the development of offspring muscle 
fibres in swine models. It is well known that the muscle 
occupies an important position in animal production, 
and the foetal period is important for muscle develop-
ment. Our findings revealed that maternal HMSeBA 
supplementation during gestation increased the muscle 
area. Diniz et  al. [23] found that maternal organic Se 
supplementation during late gestation resulted in the 
upregulation of myosin and actin filament-associated 

Fig. 4 Effect of maternal HMSeBA supplementation during gestation on the activities of metabolic enzymes in piglets. A Metabolic enzyme 
activities in newborn piglets (n = 10). B Metabolic enzyme activities in weaned piglets (n = 6). LDH, lactate dehydrogenase; SDH, succinate 
dehydrogenase; MDH, malate dehydrogenase. Data are presented as means ± SE. a,bP < 0.05 between different superscripts within the same enzyme

Table 4 Effect of maternal selenium supplementation during gestation on the oxidative status of offspring

MDA Malondialdehyde, T-AOC Total antioxidant capability, CAT  Catalase, T-SOD Total superoxide dismutase, GSH-PX Glutathione peroxidase. Data were expressed as the 
mean ± SE. a,bP < 0.05 between different superscripts within the same line

Item Treatment P‑value

Control Na2SeO3 HMseBA

Newborn piglets (n = 10)

 MDA, nmol/mg prot 6.97 ± 0.29b 7.20 ± 0.70b 5.45 ± 0.21a 0.002

 T-AOC, U/mg prot 0.38 ± 0.05 0.46 ± 0.05 0.44 ± 0.04 0.418

 CAT, U/mg prot 12.74 ± 0.61 14.20 ± 0.87 12.73 ± 0.38 0.217

 T-SOD, U/mg prot 421.76 ± 22.65a 462.08 ± 20.15ab 517.08 ± 19.74b 0.012

 GSH-PX, U/mg prot 30.16 ± 5.31a 46.78 ± 7.41a 78.70 ± 13.60b 0.014

Weaned piglets (n = 6)

 MDA, nmol/mg prot 4.09 ± 0.20b 3.96 ± 0.44b 2.27 ± 0.35a 0.003

 T-AOC, U/mg prot 0.46 ± 0.06 0.40 ± 0.01 1.12 ± 0.34 0.467

 CAT, U/mg prot 12.38 ± 1.27 13.16 ± 0.85 12.12 ± 1.04 0.797

 T-SOD, U/mg prot 350.18 ± 6.40 359.85 ± 15.60 375.37 ± 6.70 0.261

 GSH-PX, U/mg prot 44.80 ± 5.19 41.68 ± 6.07 46.24 ± 3.73 0.805
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genes in newborn calves, potentially allowing for opti-
mal muscle function and contraction. Excessive oxida-
tive stress may be a key factor in early foetal loss [24], 
whereas moderation of oxidative stress can promote 
muscle development during the embryonic period 
through the Wnt signalling pathway [25]. Wnt proteins 
are known to be involved in myogenesis as they can 
regulate the expression of Pax3, Pax7, and MRF genes 
[26]. Our results showed that compared with control, 
maternal organic Se supplementation during gestation 
significantly decreased the gene expression of myf5, 
MyoD, MyoG, and Pax7 in the LD muscle and the body 
weight of newborn piglets. However, at weaning, the 

expression of MRF4 mRNA was significantly increased 
compared to the control and  Na2SeO3 groups, while the 
body weight and LD muscle weight were similar among 
the three groups. These data suggest that piglets in 
the HMSeBA group experienced catch-up growth [27] 
during the newborn period and will have better mus-
cle development potential because of the higher MRF4 
expression [28].

Selenoprotein W (SELW), without a known biological 
function [29], is the most widely distributed selenopro-
tein in muscles under normal conditions [30]. Therefore, 
SELW may be involved in muscle metabolism. Loflin et al. 
[31] showed that SELW is involved in muscle growth and 

Fig. 5 Effect of maternal HMSeBA supplementation during gestation on the expression of selenoprotein genes in LD muscle of offspring. A The 
expression of selenoprotein genes in LD muscle of newborn piglets (n = 10). B The expression of selenoprotein genes in LD muscle of weaned 
piglets (n = 6). GPX, Glutathione peroxidase; SELP, Selenoprotein P; TXNRD, Thioredoxin reductase; SELW, selenoprotein W; SEPHS2, Selenophosphate 
synthetase 2; SELO, Selenoprotein O; SELH, Selenoprotein H; DIO, Iodothyronine deiodinase; SELN, Selenoprotein N. Data are shown as means ± SE. 
a,bP < 0.05 between different superscripts within the same gene
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differentiation. Li et al. [32] found that increased expres-
sion of the SELW gene was associated with enhanced 
water-holding capacity in meat. In our study, we showed 
an increase in SELW gene expression in weaned piglets 
in the HMSeBA group compared to the  Na2SeO3 group, 
which suggests that piglets in the HMSeBA group might 
have better muscle development and meat quality in the 
future. Further studies with growing pigs are required to 
confirm this.

The perinatal period is critical for muscle develop-
ment in piglets [16]. If muscle development is restricted 
during this period, muscle growth is affected, resulting 
in permanent damage [33]. Lefaucheur et  al. [34] found 
that undernutrition during the first postnatal week could 
decrease hypertrophy of the future fast-twitch glycolytic 
fibres, delay contractile and metabolic maturation in later 
maturation processes, and increase the percentage of 
MyHC I-containing fibres in the psoas muscle. The activ-
ities of SDH, MDH, and LDH are considered indicators 
of muscle oxidation and glycolysis. Several reports have 
shown that the activity of SDH and MDH is higher in 
oxidised fibres than in glycolytic fibres, while the activity 
of LDH in glycolytic fibres is higher than that in oxidised 
fibres [21, 35, 36]. In the present study, our results indi-
cated that more oxidised muscle fibres were transformed 
into glycolytic muscle fibres in the HMSeBA group dur-
ing the period between birth and weaning. In addition to 
the change in PGC-1α expression, adequate Se leads to 
higher feed intake [37] and improved antioxidant status 
[38] which may be another reason for this phenomenon.

It is well known that maternal nutrition during preg-
nancy has a profound impact on foetal development. Se 
can be added as an antioxidant to sow diets during preg-
nancy and lactation [39]. Dietary selenium can be used 
to synthesise selenoprotein P in the liver, which can then 
be transferred to the foetus through the cord blood, pla-
centa [40], colostrum and milk [41], and other transport 
systems. The Se in the foetus is then deposited in differ-
ent tissues, and supplied to some Se-containing proteins 
according to a hierarchy in selenoprotein expression 
which play different roles in different tissues [42]. 
Chao et  al. [3] showed that HMSeBA supplementation 
increased Se content in the muscle compared to  Na2SeO3 
supplementation. In addition, Se concentrations in neo-
natal pigs from sows fed yeast Se was higher than those 
fed  Na2SeO3 [43]. Our study also found that maternal 
HMSeBA supplementation increased Se content in the 
LD muscle of newborn piglets compared to the control 
and  Na2SeO3 groups. The higher efficiency of organic Se 
in absorption, tissue accumulation, and antioxidant bio-
availability [3, 4] may be the reason for this.

Newborn piglets suffer from severe oxidative stress at 
birth owing to their incomplete antioxidant system [44]. 

Therefore, the development and growth process of the 
foetus is easily affected by oxidative stress, and this nega-
tive effect may extend to later stages in life. In the current 
study, we found that the activities of muscle GSH-Px and 
T-SOD in newborn piglets were significantly increased, 
while MDA content was decreased in the HMSeBA 
group compared to the control group and  Na2SeO3 
group. This result suggests that maternal HMSeBA sup-
plementation during gestation improves the antioxidant 
capacity of the foetus. Furthermore, TXNRD2 expression 
was higher in the HMSeBA group than in the control 
group. These results were similar to the results of Zhan 
et al. who found that maternal selenomethionine supple-
mentation during gestation and lactation improved the 
antioxidant status in muscle as compared to the  Na2SeO3 
supplementation [7]. These results indicate that maternal 
supplementation of organic selenium during pregnancy 
can improve not only the redox status in the LD muscle 
of newborn piglets but also the redox status in weaned 
piglets. The half-life of Se in muscles is 12  d [45]. Sows 
fed organic Se had a greater transfer efficiency of Se to 
the neonate, colostrum, milk, weaned piglets, and sow 
tissues than sows fed inorganic Se. Our previous study 
also found that SELP content in milk on day 7 of lacta-
tion in the HMSeBA group was higher than that on day 
0 of lactation [8]. These data suggest that piglets from 
the organic Se group take up more Se from sows through 
maternal milk, and Se can last longer in organic form. 
This may be one of the reasons for the improvement in 
the antioxidant status in the muscle of weaned piglets.

Conclusion
The present study showed that maternal HMSeBA sup-
plementation during pregnancy increased muscle Se 
deposition in newborn piglets and improved the anti-
oxidative capacity and development of offspring muscle. 
It is very interesting that there are significant changes in 
muscle fibres during birth and weaning. Current results 
indicate maternal organic Se supplementation during 
gestation may be beneficial for muscle development in 
the offspring.
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