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Abstract 

Fatty acids are not only widely known as energy sources, but also play important roles in many metabolic pathways. 
The significance of fatty acids in modulating the reproductive potential of livestock has received greater recognition 
in recent years. Functional fatty acids and their metabolites improve follicular development, oocyte maturation and 
embryo development, as well as endometrial receptivity and placental vascular development, through enhancing 
energy supply and precursors for the synthesis of their productive hormones, such as steroid hormones and prosta-
glandins. However, many studies are focused on the impacts of individual functional fatty acids in the reproductive 
cycle, lacking studies involved in deeper mechanisms and optimal fatty acid requirements for specific physiological 
stages. Therefore, an overall consideration of the combination and synergy of functional fatty acids and the establish-
ment of optimal fatty acid requirement for specific stages is needed to improve reproductive potential in livestock.
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Introduction
The health and reproductive performance of livestock 
are directly affected by maternal nutritional and physi-
ological condition throughout gestation and lactation 
[1]. Nutrient shortages and excesses can cause reproduc-
tive disturbance and influence reproductive performance 
[2, 3]. The reproductive performance of livestock can be 
effectively improved by precisely satisfying the nutrient 

requirements of livestock at each reproductive stage [4]. 
Precise feeding patterns of functional amino acids dur-
ing pregnancy have been found to benefit livestock pla-
cental and embryo development [5–9]. Recent research 
on fatty acids has shown that lipid metabolism is vital 
throughout the reproductive cycle [10]. Lacking or exces-
sive maternal lipid reserves will cause a slew of complica-
tions, including delayed estrus, poor oocyte quality, low 
fertilization rates, abortion, intrauterine growth restric-
tion (IUGR) and preterm birth in both mouse and human 
[11, 12]. In vitro and in vivo investigations, furthermore, 
have indicated that some functional fatty acids, primar-
ily essential fatty acids, are involved in follicular devel-
opment, oocyte maturation, endometrial receptivity, 
placental development, embryo development and lacta-
tion performance [13–15]. Therefore, adding appropriate 
fatty acids according to the change of reproductive cycle 
may effectively boost the livestock reproductive potential.

Fatty acids are now widely considered to play 4 major 
physiological roles. First, fatty acids can be used as 
fuel molecules, and those mobilized in the form of 
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triacylglycerols are oxidized to provide energy for cells 
and organisms. Second, fatty acids are components of 
phospholipids and glycolipids. These amphipathic mol-
ecules play a crucial role in biological membranes. Third, 
many proteins are modified by the covalent attachment 
of fatty acids, allowing them to be targeted to mem-
branes. Fourth, fatty acid derivatives also function as hor-
mones and intracellular messengers [16]. So, a substantial 
amount of research has been conducted on fatty acid 
nutrition in livestock, and as a result, the significance of 
essential fatty acids in livestock reproduction has received 
increasing attention. Because of their distinct activities in 
metabolic regulation and physiology, nonessential long-
chain fatty acids as well as short- and medium-chain fatty 
acids have begun to receive greater attention in recent 
years. Studies on fatty acid nutrition have gradually 
shifted focus away from whether or not they are essen-
tial fatty acids to their functions. Recently, a new concept 
of functional fatty acids has arisen, which is defined as 
fatty acids participating in and regulating key metabolic 
pathways of biological health, development, growth 
and reproduction. In this review, the molecular mecha-
nisms by which functional fatty acids improve follicular 
development, promote oocyte maturation and embryo 
development by improving energy status. and increasing 
precursors of synthetic reproductive hormones, such as 
steroids and prostaglandins (PGs). And increasing pre-
cursors of synthetic reproductive hormones, such as ster-
oids and prostaglandins (PGs), are reviewed. Finally, the 
roles of fatty acids and their metabolites in endometrial 

receptivity, placental vascular development and lacta-
tion are analyzed. Moreover, the molecular mechanisms 
by which functional fatty acids and their metabolites 
affect livestock reproductive performance are explored in 
depth, thereby explore the potential for functional fatty 
acids to improve the reproductive performance in mod-
ern farming and animal husbandry.

Metabolism of functional fatty acids in livestock
Sources and synthesis of functional fatty acids in livestock
Functional fatty acids are derived from endogenous synthe-
sis in vivo or from diets on the length of the carbon chain 
and the number and position of unsaturated bonds. In 
livestock, nonessential fatty acids of functional fatty acids 
can be generated through the de novo synthesis of fatty 
acids, and because of the lack of enzymes for the synthe-
sis of essential fatty acids of functional fatty acids, the syn-
thesis of some fatty acids depends on the essential fatty 
acids obtained from food (Fig. 1). As indicated in the fig-
ure, the synthesis of fatty acids begins with the carboxyla-
tion of acetyl-CoA into malonyl-CoA, and the extension 
phase of fatty acid synthesis begins with the formation of 
acetyl-acyl carrier protein (acetyl-ACP) and malonyl-ACP 
by acetyl-CoA and malonyl-CoA under the catalysis of cor-
responding enzymes. Then through condensation, the two 
form acetoacetyl-ACP, which is then reduced, dehydrated 
and reduced to butyryl-ACP. Another cycle begins with the 
condensation of butyl-ACP and malonyl-ACP [16]. This 
series of reactions is repeated until the final product pal-
mitate (C16) is formed, during which functional short- and 

Fig. 1  Pathways of endogenous and dietary fatty acid synthesis of functional fatty acids in livestock. ACC1: Acetyl-CoA carboxylase 1; FAS: Fatty acid 
synthase; Elovls: Elongase of very long chain fatty acids; Scd: Stearoyl-CoA desaturase; D5D: Δ5 desaturase; D6D: Δ6 desaturase
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medium-chain fatty acids are generated. Then, the carbon 
chain is extended based on the elongation of very long 
chain fatty acids (ELOVLs), and unsaturated bonds are 
formed by the stearoyl-CoA desaturase (SCD) family. The 
above synthesis process is mostly found in the liver of live-
stock, and microbes in the hindgut can also produce short-
chain fatty acids.

Another way for livestock to obtain functional fatty acids 
is diet. Foraging is the primary source of nutrients for live-
stock to maintain growth and production, and the compo-
sition and number of fatty acids in diet have an impact on 
livestock growth, immunity and reproduction. Table 1 lists 
the distribution and key sources of some functional fatty 
acids in feed. Different livestock species have vastly diverse 
digestive tracts; therefore, absorption of fatty acids from 
diet varies across species as well. The fatty acid concen-
trations in the diet for ruminants are normally low [2.5%–
3.5% of dry matter intake (DMI)] in the diet [17]. Oilseeds, 
various plants, and animal by-products containing fat or 
oil, such as fishmeal and distilled grain, are the most preva-
lent sources of lipids to cattle. The extent of the biohydro-
genation can, however, be reduced in supplementary feeds 
by the use of protected oils such as calcium soaps which 
bypass the rumen and release long-chain polyunsatu-
rated fatty acids (LCPUFAs) into the small intestine [18]. 
In monogastric animals, such as swine, a slightly higher 
proportion of fats and oils can be added directly to their 
feeds, which is often simply a way to increase the energy 
concentration in traditional diet formulas. The further 
synthesis of fatty acids in different livestock is nearly iden-
tical despite the differences in their sources, as shown in 
Fig. 1; livestock can synthesize other long-chain functional 
fatty acids: arachidonic acid (ARA), docosahexaenoic acid 
(DHA) and eicosadienoic acid (EPA) by alpha-linolenic 
acid (ALA) and linoleic acid (LA) in diet. Research over 
the last two decades has revealed that it is beneficial to use 

special fat sources that have not only high energy but also 
positive effects on reproduction and other physiological 
processes [7, 19, 20].

Digestion, absorption and metabolism of functional fatty 
acids in livestock
As shown in Fig. 2, the first step in the digestion of fat in 
diet occurs in the stomach; this process is catalyzed by 
lingual lipase or gastric lipase [24]. Specifically, lingual 
lipase is predominant in ruminants and rodents, whereas 
gastric lipase is predominant in swine, rabbits, dogs 
and humans [25]. The stomach digests about 10%–30% 
of triglycerides in diet, and the resulting products are 
diglyceride and free fatty acids [24]. The remaining undi-
gested lipids are discharged as an emulsion encapsulated 
by cholesterol and cholesterol esters from the stomach. 
Although gastric lipase catalyzes limited fat digestion, it 
aids pancreatic lipase in binding to the emulsion/water 
interface, allowing fat digestion to be more efficient [26]. 
Pancreatic cholesteryl ester hydrolase can fully hydrolyze 
cholesteryl esters into free fatty acids and free choles-
terol [27], and it may also have a role in the digestion of 
triglyceride containing LCPUFAs [27]. Phospholipids in 
feed are degraded to 1-lysophospholipids and free fatty 
acids by activated pancreatic phospholipase A2 [27]. Ulti-
mately, the intestine absorbs all fat digestion products 
into circulation.

The ability and mechanism of fatty acid absorption are 
first determined by the carbon chain length. Fats con-
taining fatty acids with less than 8 carbon atoms can be 
absorbed without hydrolysis, but those containing fatty 
acids with more than 8 carbon atoms must be absorbed 
after enzymatic hydrolysis, and short- (≤ 4 carbons) and 
medium-chain (≤ 12 carbons) fatty acids are more easily 
absorbed by the intestine than long-chain fatty acids [28]. 
Short-chain fatty acids are currently thought to enter 

Table 1  Distribution and sources of functional fatty acids in diets [21–23]

Name Number 
of carbon 
chain

Fatty acid type Essential 
fatty acid

Percentage of oils commonly used in several 
diets, %

Main source

Soybean oil Corn oil Peanut oil Sesame oil

Butyrate 4 Short chain No -  - 0.1  - Milk, synthetic

Caprylic acid 8 Medium chain No -  -  -  - Coconut oil, synthetic

Lauric acid 12 Medium chain No -  -  -  - Coconut oil, synthetic

Oleic acid 18 Monounsaturated No 23.7 1.9 42.9 4.8 Olive oil

Linoleic acid 18 Polyunsaturated Yes 52.8 31.4 34.8 39.3 Safflower oil

α-Linolenic acid 18 Polyunsaturated Yes 5.8 51.9 0.1 41.3 Corn oil

Arachidonic acid 20 Polyunsaturated Yes 0.2 0.7 1.1 0.3 Meat, dairy

Eicosapentaenoic acid 20 Polyunsaturated No - 0.3 - - Fish oil

Docosahexaenoic acid 22 Polyunsaturated No -  - - - Fish oil
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the gut in two ways. First, short-chain fatty acids pass 
through the cell via simple diffusion, while formic acid, 
ethanoic acid and propionic acid can enter the cells via 
nonionic diffusion and penetration, similar to other elec-
trolytes in the lipid bilayer [29]. Second, short-chain fatty 
acid transport requires certain proteins, and the entry 
of butyric acid into the rat distal colon is defined as pH-
dependent and carrier-mediated anion exchange [30, 31]. 
Moreover, fatty acid transport proteins are not required 
for the intake of short-chain fatty acids in the gut [32]. 
Intestinal cells absorb medium-chain fatty acids with 
more than 8 carbon atoms in a similar way with long-
chain (> 12 carbons) fatty acids. The main difference is 
that the rate of long-chain fatty acids passing through the 
unstirred water layer (a liquid membranes on the surface 
of the epithelium) is limited and that of medium-chain 
fatty acids is limited only on the brush border membrane 
[33]. Fatty acid transport proteins [32], FAT/CD36 [34] 
and fatty acid-binding protein (FABP) [35] are required 
for long-chain fatty acid uptake.

Functional fatty acids are used by livestock in a variety 
of ways during the reproductive cycle; with 3 primary 

functions. (1) After digestion and absorption, fatty acids 
are induced to form lipid droplets in cells. Different types 
of fatty acids are stored by different forms in the tissues 
and cells of livestock to exert key biological function. 
Except for the liver and adipose tissue, most tissues are 
strongly reliant on fatty acids. However, large numbers of 
lipid droplets are found in livestock oocytes and embryos 
[36, 37]. Such a high-density lipid accumulation condi-
tion is linked to their vital role in reproduction, and the 
lipid composition of lipid droplets can be regulated by 
lipids in diet [38]. (2) Fatty acids in vivo, whether endog-
enously synthesized or derived from diet, can be utilized 
by an organism to provide cellular energy via mitochon-
drial β-oxidation. The full oxidation of fatty acids can 
yield 38 kJ/g energy, while only 17 kJ/g energy can be pro-
duced by carbohydrates and proteins. Whereas oocytes 
require a substantial amount energy during develop-
ment, especially during cytoplasmic and nuclear matura-
tion, and frequent cell division and differentiation during 
embryo development also depend on an abundant energy 
supply. Such an efficient energy supply plays a crucial 
role in oocyte maturation and embryo development in 

Fig. 2  Fatty acid digestion and absorption in diets of monogastric animals (pigs) and ruminants (cattle). FA: Fat; DAG: Diacylglycerol; FFA: Free 
fatty acids; MG: Monoglyceride; TBA: Total bile acid; LCFA: Long chain fatty acid; MCFA: Medium chain fatty acid; SCFA: Short chain fatty acid; APO: 
Apolipoprotein; TAG: Triacylglycerol; CD36: Cluster of differentiation 36; FABP: Fatty acid-binding protein; FATP: Fatty acid transport protein
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livestock [14]. (3) In addition, fatty acids are metabolized 
into other functional molecules, such as cannabinoids, 
PGs, lysophospholipids, sphingosine 1-phosphate and 
steroid hormones, that are important for regulating live-
stock reproduction [10]. Therefore, altering the fatty acid 
structure in diet can not only supply energy to livestock 
oocyte and embryo development but also improve the 
lipid environment for oocyte and embryo development.

Effects of functional fatty acids on follicular development 
in livestock
Over the years, researchers have discovered a strong link 
between oocyte quality and follicle size [39–41]. Folli-
culogenesis involves paracrine, autocrine and endocrine 
interactions, which are dependent on the proliferation 
and differentiation of granulosa cells and nutrients in the 
follicular fluid (FF), thereby jointly creating an important 
and unique microenvironment for oocyte development 
and maturation. The follicle in mammals is a functional 
syncytium including the oocyte, the cumulus cells, and 
the mural granulosa cells [42]. And the granulosa cells 
(corona radiata) which are directly attached to the zona 
pellucida extend membrane transzonal projections that 
form gap junctions with the vitelline membrane of the 
developing oocyte [43]. Therefore, follicular growth and 
oocyte maturation are associated with dynamic tran-
scriptional regulation of oocytes and granulosa cells [44]. 
Follicular fluid, a key dynamic component of the follicle, 
reflects the follicular developmental status and is an indi-
cator of granulosa and theca cell activity [45]. According 
to recent findings, functional fatty acids improve follicu-
lar growth and consequently oocyte quality in livestock 
by influencing steroidogenesis in granulosa cells/corpus 
luteum as well as the lipid composition of FF.

Improvement of the steroidogenesis capacity in granulosa 
cells/corpus luteum through functional fatty acids 
to promote follicular development in livestock
Although a variety of cells in the follicle regulates ster-
oidogenesis, only the effect of fatty acids on granulosa 
cell function has been widely reported, especially in live-
stock. Depending on stage of development and location 
of the granulosa cells within the follicle wall and sur-
rounding the oocyte, granulosa cells have distinct phe-
notypes (mural granulosa cells, sinus granulosa cells, 
and cumulus granulosa cells). Mural granulosa cells 
have a great capacity for steroidogenesis [46]. Estradiol 
is the important steroid hormone produced by granulosa 
cells before ovulation, whereas cumulus granulosa cells, 
which are discharged with the oocyte at ovulation, do not 
express aromatase but can secrete extracellular matrix 
components such as hyaluronic acids proteoglycans [47, 

48] which are involved with expansion of the cumulus 
cells during ovulation. Granulosa and theca cells become 
luteal cells and are responsible for the production of 
estradiol and progesterone, the latter is predominantly 
expressed in the corpus luteum [49–51]. The ability of 
granulosa cells/corpus luteum to synthesize steroid hor-
mones is the most important function.

Research on the effects of fatty acids on granulosa cells 
has been widely conducted over the last two decades 
because fatty acids, particularly long-chain unsaturated 
fatty acids, are considered precursors for steroidogen-
esis. Both etomoxir, which inhibits fatty acid oxidation, 
and C75, which inhibits fatty acid synthesis, have been 
found to impair DNA synthesis in bovine granulosa cells 
and reduce the phosphorylation of adenosine monophos-
phate-activated protein kinase (AMPK) and acetyl-CoA 
carboxylase [52]. Furthermore, C75 inhibits the synthe-
sis of progesterone in granulosa cells [52]. These findings 
imply that fatty acid oxidation and synthesis are criti-
cal for granulosa cell proliferation and steroidogenesis. 
Previous in vitro culture studies revealed that OA (oleic 
acid) can boost estradiol synthesis in bovine follicular 
granulosa cells cultured in vitro but reduce the prolifera-
tion of granulosa cells [53]. However, in recent research, 
OA is reported to have adverse impacts on the steroido-
genesis and morphology of bovine granulosa cells cul-
tured in vitro [54]. Similarly, in vitro culture experiment 
involving bovine follicular granulosa cells revealed that 
α-linolenic acid (ALA) and LA inhibit the expression of 
genes associated with steroidogenesis in granulosa cells 
and lower the concentrations of secreted estradiol and 
progesterone [55]. But, the treatment of bovine granu-
losa cells with another functional fatty acid, DHA (doco-
sahexaenoic acid), promoted granulosa cell proliferation 
as well as progesterone and estradiol secretion [56]. A 
low-dose ARA (arachidonic acid) boosted the survival 
rate of granulosa cells, but high-dose ARA suppressed 
estradiol secretion and promoted progesterone synthesis 
in granulosa cells [57]. The differences suggest that both 
the concentration and type of fatty acid have an effect 
on steroidogenesis. Although functional fatty acids have 
been found to affect steroid synthesis, the specific regu-
latory mechanisms remain unclear. It has been found in 
goats that OA and LA boost the secretion of progesterone 
from goat granulosa cells through the mitogen activated 
protein kinase (MAPK) ERK1/2 signaling pathway [58]. 
Butyric acid is found to stimulate the synthesis of pro-
gesterone and estradiol in porcine ovarian granulosa cells 
via the cAMP signaling pathway [59]. Also, our previous 
research showed that butyrate triggers histone acetyla-
tion of histone H3K9 (H3K9ac) to activate steroidogen-
esis through peroxisome proliferator-activated receptor 
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gamma (PPARγ) and peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha-like (PGC1α) path-
ways in ovarian granulosa cells [60] (Fig. 3). In addition, 
there are few studies on combinations of functional 
fatty acids, but several in  vivo feeding trials have 
found that a supplementation of LCPUFAs can pro-
mote ovarian steroidogenesis, which suggests targeted 
use of specific fatty acid combinations in physiological 
stages may have positive CL effects on granulosa cell 
function [61–65].

More studied are required in terms of the impact of 
fatty acids, especially functional fatty acids, on the func-
tion of ovarian granulosa cells/corpus luteum in live-
stock, not only in terms of steroid hormone, but also in 
terms of the effects of fatty acids on follicle stimulating 
hormone (FSH) and luteinizing hormone (LH), and more 
combinations should be explored. In  vivo experiments 
combined with specific physiological stages of livestock 
may be more effective in clarifying the role of functional 
fatty acids in granulosa cells/corpus luteum.

Enhancement of follicular development in livestock by 
improving the composition of functional fatty acids in FF
The only environment for oocyte growth and matura-
tion is FF, while FF comes from 2 sources: blood flow 
connecting some sheathed capillaries in the ovary cortex 
and components secreted by the cellular layer within the 
follicle, especially granulosa cells [45, 66]. FF is rich in 
fatty acids, with nonesterified fatty acids (NEFAs) being 
the most prevalent, and the content and concentration 
of NEFAs are affected by maternal physiological circum-
stances [13, 67]. LA, OA, stearic acid, palmitic acid, AA 
and ALA are the primary components of FF lipids from 
swine, cattle and goats (Table  2), indicating that func-
tional fatty acids are significant component of FF, and 
further investigation of their role and changes in com-
position and concentration are important. Furthermore, 
a recent metabolomics analysis of FF in high- and low-
reproduction sows indicated that the fatty acid composi-
tion and metabolism of sows with varying reproductive 
performance differ significantly [68].

Fig. 3  Molecular mechanisms of functional fatty acids affecting follicular development, granulosa cell steroidogenesis, and oocyte maturation. 
PPARγ: Peroxisome proliferator-activated receptor gamma; PGC1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha-like; 
CD36: Cluster of differentiation 36; StAR: Steroidogenic acute regulatory protein; BA: Butyric acid; H3K9ac: Acetylation of histone 3 at lysine 9; 
cAMP: Cyclic Adenosine monophosphate; DHA: Docosahexaenoic acid; OA: Oleic acid; LA: Linoleic acid ; MAPK: Mitogen-activated protein kinase; 
P4: Progesterone; E2: Estradiol; ALA: α-linolenic acid; EPA: Eicosadienoic acid; ATP: Adenosine triphosphate; IP3: Inositol 1,4,5-triphosphate; DAG: 
Diacylglycerol; ARA: arachidonic acid; SFAs: Saturated fatty acid; CA: Caprylic acid; ↑: Promote/Increase; ↓: Inhibit/Decrease.
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Lipids taken up by oocytes are mainly from FF. Changes 
in the lipid environment of FF have a strong impact on 
oocyte maturation. Lipid-rich FF induces lipid accumula-
tion and endoplasmic reticulum stress in oocytes, weak-
ening oocyte maturation [72], and such changes affect 
early embryo development and subsequent pregnancy 
[73–75]. Therefore, the kinds of fatty acids should be con-
sidered at the time of improve the lipid environment of 
FF in livestock. Continuous feeding of fatty acid calcium 
soap to cows for 150 d after parturition altered the fatty 
acid composition in follicles and greatly increased the 
proportion of estradiol-rich active follicles and large fol-
licles [76]. Another study involving the follicular injec-
tion of fatty acids showed that OA reduced considerably 
reduced the concentration of estradiol in follicles and the 
follicular ovulation rate [77]. Fatty acids are influenced by 
the body’s complex physiological environment; therefore, 
they may transform or affect follicular development in 
other ways. According to comparative research, the FF of 
dominant follicles of cattle have large quantities of ALA 
and low concentrations of OA and ARA [70]. Consistent 
results with goats were obtained in a comparative analysis 
of goat follicles, i.e., the concentration of ALA in FF rises 
with the enlargement of follicles [78]. As demonstrated 
in horse follicle culture experiments, ALA added into the 
medium can facilitate horse follicular growth and granu-
losa cell proliferation [79]. Using in  vivo experiments, 
researchers also discovered that adding linseed oil to 
cattle diet can increase the proportion of ALA, EPA and 
DHA in FF and granulosa cells, contributing to oocyte 
maturation and embryo development [80]. Likewise, 
ALA-rich sow diet can greatly improve the composition 
of these fatty acids in FF and improve oocyte quality [69]. 
These findings imply that an increase in ALA concentra-
tion in FF has a positive influence on livestock follicular 

growth despite an unclear mechanism. In sum, the lipid 
composition of FF, i.e., the lipid environment in which the 
oocyte is located, is well understood, but there has been 
little research on the functions and changes in key fatty 
acids, especially on the molecular mechanisms of lipid 
regulation throughout follicular development. Further 
clarifying the exact functions and mechanisms of lipids 
during livestock follicular development will help increase 
oocyte quality and assure pregnancy success.

Role and mechanism of functional fatty acids 
in oocyte maturation and development in livestock
The oocyte is the largest cell in terms of diameter in female 
livestock, and as the female germ cell in sexual reproduc-
tion, its normal and high-quality development is the foun-
dation for animal reproduction. Before oocyte fertilization 
into early embryo and embryo implantation, the oocyte 
provides practically all of the nutrients and associated sub-
strates for the fertilized egg. Therefore, it is of great impor-
tance to study the effects of different nutrients on oocyte 
quality. However, most research has focused on oocyte 
metabolism of exogenous nutrients such as glucose, lactic 
acid, pyruvic acid and amino acids, while lipid metabolism 
has been largely ignored. As previously stated, livestock 
oocytes have significant lipid droplet enrichment, and the 
analysis of fatty acids in porcine oocytes revealed that pal-
mitic acid is the most abundant in total and neutral lipids, 
followed by OA, while n-6 PUFAs, such as LA, ARA and 
adrenic acid, also account for a large proportion [81]. Tri-
glycerides are the most abundant in porcine oocytes (74 ng 
each oocyte), 3 times that in bovine and goat oocytes [82]. 
The total fatty acid content is also high in porcine oocytes 
(160 ng each oocyte), 2.5 times that in bovine oocytes and 
1.8 times that in goat oocytes. Palmitic acid, stearic acid 
and OA are the most abundant in bovine, porcine and 
goat oocytes, respectively, but swine has higher palmitic 

Table 2  Fatty acid composition of follicular fluid from different livestock

Fatty acid, % Livestock

Prcine [69] Cow [70] Goat [71]

C16:0 (palmitic) 24.73 26.6–30.3 24.59

C18:0 (stearic) 15.5 22.8–28.8 22.66

C18:1 (oleic) 17.81 14.6–19.3 23.53

C18:2 (linoleic) 16.77 23.6–30.8 10.01

C18:3 (α-linolenic) 0.95 - 2.22

C20:3 (homogamma linolenic) - 0.7–1.3 -

C20:4 (arachidonic) 10.8 1.8–3.5 5.92

C22:5 (eicosapentaenoic) 0.12 - 1.89

C22:6 (docosahexaenoic) 0.85 - 1.91
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acid content than OA content, while cattle and goats have 
higher relative OA content. Although oocyte size is not 
taken into account, Nile red staining revealed that the con-
tent of lipids in porcine oocytes is 2.4 times that in bovine 
oocytes, while that in bovine oocytes is 2.8 times that in 
mouse oocytes [83].

Role of fatty acid oxidative energy supply in oocyte 
development and maturation
The primary function of fatty acids in oocytes is to pro-
vide energy. Meiosis in mammalian oocytes is arrested 
as early as the embryonic period in the diplonema of 
the first meiosis prophase, and oocytes cannot resume 
meiosis until exposure to gonadotropins following sex-
ual maturity. Failure of resumption of oocyte meiosis 
leads to maturation failure, significantly decreasing live-
stock reproductive performance. Oocytes require a sub-
stantial amount of energy during meiotic resumption. 
Fatty acids can be used as the sole source of energy for 
oocyte growth and development, as in  vitro oocytes in 
dairy cows have been shown to mature successfully in the 
absence of external energy sources [84]. Oocyte matu-
ration in  vitro is delayed when fatty acid β-oxidation is 
blocked and an external energy source is unavailable [85]. 
The use of methyl palmitate (a targeted inactivator of car-
nitine palmitoyl transferase 1, to block the entry of fatty 
acids into the mitochondria [86]) to inhibit fatty acid 
metabolism during the in vitro maturation (IVM) of por-
cine and bovine oocytes has been shown to reduce oocyte 
viability and the blastocyst rate after oocyte fertilization 
[85, 87]. Similarly, acyl-CoA synthetase long-chain family 
member 3 (ACSL3) and acyl-CoA synthetase long-chain 
acyl-CoA dehydrogenase (ACADL) are activated before 
long-chain fatty acids enter the mitochondria and cata-
lyze the first step of β-oxidation, and the levels of  these 
two enzymes are dysregulated in porcine oocytes with 
limited developmental capacity [88]. Furthermore, the 
in vitro rate of mouse mature cumulus-oocyte complexes 
(COCs) to metabolize fatty acids is less than half that of 
mature COCs in vivo, and the rate is linked to dysregu-
lated expression of at least 15 genes involved in fatty acid 
activation, transport, and oxidation [89]. All of the above 
findings suggest that fatty acid oxidative energy supply 
is critical during oocyte growth and meiotic matura-
tion but that the elevated levels of different fatty acids 
have different significance for oocytes based on their 
types and structures. Excessive levels of fatty acids, espe-
cially saturated fatty acids, in oocytes are now widely 
known to cause lower fertilization and embryo develop-
ment rates as well as irreversible damage to fetal growth 
and offspring [90, 91]. This is linked to oocyte mito-
chondrial morphological damage and oxidative stress 
induced by excess fatty acids [92]. OA can counteract this 

unfavorable effect by assisting in the absorption and sta-
ble storage of these saturated fatty acids in lipid droplets 
[37]. Further studies are needed on the role of different 
fatty acids in oocyte β oxidation. A more balanced func-
tional fatty acid composition in oocytes not only provides 
enough energy but also minimizes lipid-related unfavora-
ble consequences.

Other roles of functional fatty acids in oocyte development 
and maturation
Fatty acids can influence oocyte maturation in a variety of 
ways in addition to the β-oxidation pathway. When ALA 
is added to bovine oocytes during IVM, the number of 
cells reaching meiosis II increased, and the MAPK sign-
aling pathway is more active in these oocytes, resulting 
in higher-quality embryos [93]. A supplementation of 0.1 
µmol/L of DHA significantly improved oocyte growth, 
increased acetylation levels of H4K12, and ATP con-
tents [94]; LA inhibits the maturation of bovine oocytes 
in vitro [95], suppresses embryo division and blastocyst 
development, and weakens the MAPK1/3 signaling path-
way [96]. Furthermore, phospholipid and cholesterol 
enrichment during oocyte maturation is required for 
rapid cell division and membrane formation after oocyte 
fertilization. During oocyte maturation and embryo 
development, phospholipids are also involved in the syn-
thesis of second messengers. Phosphatidylinositol, for 
example, makes up 6% of total phospholipids in porcine 
oocytes and is rich in ARA and stearic acids as well as 
palmitic acid [81]. Inositol 1,4,5-triphosphate (IP3) and 
diacylglycerol (DAG) are two second messengers pro-
duced by membrane phospholipid hydrolysis. IP3 and its 
derivative (IP4) increase Ca2+ levels, whereas DAG stim-
ulates PKC [82, 97], both of which are critical in oocyte 
maturation and single-sperm fertilization capacity. There 
are many other functional lipids in oocytes similar to 
phospholipids, but it is still unknown how they, including 
phospholipids, are affected by fatty acid levels in ration 
and the body. It is clear that the correlation between lipid 
oxidation in oocytes and oocyte maturation has been 
well explored. However, the regulation of fatty acids on 
signaling molecules in oocytes and the role of membrane 
structure have rarely been studied; further research is 
needed.

Mechanism of functional fatty acids in increasing 
the livestock implantation rate by improving 
endometrial receptivity
Embryo implantation is the most critical step in a suc-
cessful pregnancy, which involves the regulation of 
implantation, embryo development, uterine physiology 
and the interaction between embryo and uterus. Recep-
tivity refers to the endometrium’s ability to allow for 
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normal implantation, and optimal receptivity ensures 
normal implantation, which is the foundation for a 
healthy pregnancy [98]. The majority of embryo losses 
in livestock occur during the implantation period, and 
embryo implantation failure in early pregnancy is a lead-
ing cause of pregnancy failure. Embryonic loss in pigs, 
for example, is the highest among livestock, ranging from 
30% to 50% [99]. Embryo loss in the early pregnancy 
accounts for about 75% of the entire pregnancy [100]. 
Multiple reaction processes, such as immune responses, 
inflammatory responses, complement pathway changes 
and coagulation modulation, are regulated by the tran-
scriptomic profiles of the receptive endometrium [101]. 
Triglycerides and eicosanoids are the major lipid media-
tors released by the endometrium during the implanta-
tion period. In the eicosanoid family, PGs, thromboxanes, 
leukotrienes, endogenous cannabinoids and sphingolip-
ids all play roles in reproduction [102–104]. In addition, 
steroid hormones and lysophospholipids produced under 
direct or indirect regulation of lipid metabolism are also 
important regulators of endometrial receptivity.

Functional fatty acids regulate steroidogenesis 
and improve endometrial receptivity
The endometrium is extremely sensitive to hormonal 
changes, especially in the presence of steroid hormones, 
and such changes help the embryo prepare for implan-
tation [105]. Estrogen and progesterone are key media-
tors of embryo implantation. During this critical period, 
estrogen and progesterone are still supplied by the ova-
ries. In both in vivo and in vitro experiments, functional 
fatty acids have demonstrated to influence estrogen and 
progesterone levels in livestock [106–108]. Estrogen, 
in particular, plays a critical role in the embryo implan-
tation window, and high estrogen levels can cause the 
window to close in some mammals [109]. Estrogen and 
progesterone primarily act through nuclear receptors, 
namely estrogen receptor (ER) and progesterone recep-
tor (PR). Estrogen binding to ER is primarily respon-
sible for endometrial epithelial cell proliferation [110]. 
Nuclear receptor coactivator-6 (NCOA6) degrades ER by 
ubiquitination, while NCOA6 loss in the uterus disrupts 
embryo implantation by increasing E2 sensitivity [111]. it 
is found that initiation of progesterone receptors (PRs) in 
the uterus and uterine epithelium by progesterone 10–12 
days after estrus is essential for achieving receptivity of 
the endometrium for implantation in pigs [112]. Further-
more, PR is dependent on steroid receptor coactivator 2 
(SRC2) to activate the uterine decidual reaction; there-
fore, in utero knockout of SRC2 results in implantation 
failure [113, 114]. Therefore, these studies indicate that 
fatty acids regulate the receptivity of endometrium in 

early pregnancy by mediating the levels of estrogen and 
progesterone.

Functional fatty acids improve endometrial receptivity 
by affecting the synthesis of PGs
Enhanced vascular permeability at the blastocyst implan-
tation site is associated with increased endometrial 
receptivity in livestock [115]. PGs have long been recog-
nized as key vascular active factors in ovulation, fertili-
zation, late pregnancy and delivery. PGs have also been 
discovered to be essential for the success of embryo 
implantation [102, 116]. PGs are lipid mediators gener-
ated by the enzymatic metabolism of ARA, a 20-carbon 
unsaturated fatty acid. In response to numerous physi-
ological and pathological stimuli, ARA is produced via 
cell membrane phospholipids under the catalysis of phos-
pholipase A2 (PLA2) and converted into the PG inter-
mediate metabolites PGG2 and PGH2 in turn under the 
epoxidation and peroxidation activity of prostaglandin H 
synthase (PGHS), also known as prostaglandin-endoper-
oxide synthase (PTGS). After being metabolized by dif-
ferent downstream PG synthases, various biologically 
active PGs are generated, including PGI2, PGE2, PGF2α, 
PGD2, and thromboxane A2 (TxA2). PTGS is a major 
enzyme in PG synthesis, with 2 isoforms, PTGS-1 and 
PTGS-2, found in the endoplasmic reticulum and nuclear 
membrane in the form of homodimers or heterodimers. 
PTGS-1 and PTGS-2 are functionally different but inter-
related, and both are involved in maintaining the homeo-
stasis and synthesis of PGs during inflammation. PGE2 
maintains the luteal function for embryo development 
and early implantation [117]. PGF2α is a main luteolytic 
factor in vivo. In sows, PGF2α is an important regulator of 
corpus luteum function, uterine contractility, ovulation, 
and embryo attachment [118]. Also, the regression of the 
corpus luteum in ruminants is initiated by the rhythmic 
release of PGF2α in high concentrations from the non-
pregnant uterus [119]. Functional fatty acids in diet have 
been shown to influence PG synthesis in a variety of 
ways, including the provision of substrates in PG synthe-
sis, influencing the expression and concentration of asso-
ciated enzymes, and acting as substrates and competitive 
inhibitors of cyclooxygenases [120]. Furthermore, the 
proportion of functional fatty acids, especially PUFAs, in 
diet alters the phospholipid composition in the cell mem-
brane, indicating the importance of fatty acids, because 
different PG precursors compete for the same enzyme 
system [121]. Previous research has demonstrated that 
adding functional fatty acids to feed can regulate the gene 
expression of important enzymes in the PG biosynthe-
sis pathway, such as PTGS [122], in the first trimester of 
pregnancy, thereby benefiting the overall porcine repro-
ductive process [123].
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In addition to the above 2 major lipid metabolic path-
ways that alter endometrial receptivity in livestock, 
lysophospholipids [124], endogenous cannabinoids 
[125] and sphingolipids [10] are also regulated by lipid 
metabolism and play crucial roles in endometrial recep-
tivity. But there is little direct evidence to confirm that 
functional fatty acids are involved in regulating their 
synthesis and function, further research is needed.

Role of functional fatty acids in placental vascular 
development
In livestock, the placenta supports normal embryo devel-
opment and growth during pregnancy. The most impor-
tant function of the placenta is to carry nutrients, gases, 
and waste between the maternal and fetal circulations, 
thereby creating a favorable environment for embryo 
development in the uterus [126]. The maternal and fetal 
circulations are separated by multiple layers of cells; 
therefore, factors at the maternal-fetal interface regu-
late the transfer of molecules between these layers [127]. 
IUGR and miscarriage are two examples of embryonic 
defects caused by poor placental function [126, 128]. Pla-
cental malnutrition has a long-term impact on offspring 
metabolism, even throughout life [129]. Fatty acids are 
transported from the mother to the child through the 
placenta and, together with their metabolites, are also 
stored in considerable amounts in the placenta, sup-
porting placental growth and development as the preg-
nancy proceeds. Based on recent research, fatty acids are 
thought to influence placental growth and development 
through regulating placental angiogenesis.

The development of the placental vascular network is 
vital to the growth and maintenance of the developing 
embryo [130–132]. Vascular endothelial growth factor 
(VEGF), angiopoietin-like protein 4 (ANGPTL4), plate-
let-derived growth factor (PDGF) and platelet-activating 
factor (PAF) are all involved in the process of angiogen-
esis [130–133]. Angiogenesis can be aided by functional 
fatty acids either directly or indirectly [134–136]. Stud-
ies have shown that angiogenic growth factors, cell 
migration, proliferation and angiogenesis are all regu-
lated by eicosanoid, and eicosanoid produced by ARA 
boosts angiogenesis, while eicosanoid produced by EPA 
and DHA suppresses angiogenesis [134–136]. Angio-
genesis is influenced by a variety of different elements 
[135, 137]. Prostaglandin E2 (PGE2) is also implicated in 
placental angiogenesis [135, 138, 139], and it boosts the 
production of VEGF, bFGF and CXCL1, which in turn 
promote angiogenesis through targeting endothelial cells 
[135, 139–141]. Furthermore, PGE2 is a PTGS-2 prod-
uct, and there is considerable evidence that PTGS-2 is 
an angiogenic mediator; the inhibition of PTGS-2 with 
selective PTGS-2 inhibitors can significantly prevent 

inflammation, proliferation and angiogenesis and induce 
apoptosis [142]. A range of angiogenic factors, includ-
ing VEGF, ANGPTL4, PDGF, leptin and TNF, have been 
shown to be regulated by functional fatty acids and their 
derivatives [135, 136]. N-3 functional fatty acids influ-
ence angiogenesis through a variety of mechanisms, 
including regulating the expression of VEGF, ANGPTL4 
and other mediators such as eicosanoid, PTGS, FABP and 
nitric oxide (NO) [135]. In human placenta, the extra vil-
lous trophoblast cells, DHA stimulates angiogenesis by 
boosting the expression and secretion of VEGFA, the 
most potent angiogenic factor [143]. Therefore, DHA 
can help early placental development by boosting angio-
genesis [143]. The mechanism by which DHA increases 
VEGFA expression in placental trophoblast cells remains 
unknown. However, DHA is specific for VEGFA expres-
sion, because it’s mRNA is induced by a wide range of 
growth factors and cytokines, including PDGF, EGF, TNF, 
TGF-1 and IL-1, not by other fatty acids [143]. In these 
cells, DHA-induced VEGFA expression is not accompa-
nied by PTGS-2 and HIF1 (Hypoxia inducible factor 1) 
expression, suggesting that DHA metabolites may not be 
involved in VEGFA expression. The DHA stimulation of 
VEGFA expression is unlikely to involve PPARγ because 
PPARγ ligands do not promote VEGFA expression in 
these cells [144]. DHA enhances VEGFA expression and 
secretion, whereas fatty acids, including EPA, ARA, OA 
and CLA, promote ANGPTL4 secretion without influ-
encing VEGF synthesis in placental trophoblast cells. 
These findings imply that the mode of action of DHA in 
angiogenesis is distinct from other fatty acids [143]. The 
mechanism by which fatty acids other than DHA stimu-
late ANGPTL4 secretion in placental trophoblast cells 
is still unknown. Based on recent extensive research on 
angiogenesis regulators in human and mouse, functional 
fatty acid regulation of placental angiogenesis may also 
become a unique and effective way to ensure a favora-
ble outcome in most pregnancies of livestock. Of course, 
more relative researches on livestock are needed in the 
near future.

Role of functional fatty acids in livestock embryo 
development
Reduced fertility is generally caused by inferior oocyte 
and embryo quality rather than ovarian/endocrine dys-
function [145–147]. Moreover, enhancing livestock 
reproductive performance by assisted reproduction tech-
niques, such as in vitro fertilization and embryo transfer, 
has relied on high-quality early embryos after in  vitro 
fertilization. Despite differences in gestation period and 
number of fetuses across livestock species, the embryo 
development stage is essentially the same. From embry-
ogenesis to delivery, there are 4 major morphological 
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changes: fertilized egg, morula, blastocyst and fetus. Fatty 
acids play vital roles in each stage of embryo development 
by supplying energy, controlling steroid hormones, and 
serving as signaling molecules and membrane structures. 
Even though the fetus has a partial capacity to endog-
enously synthesize fatty acids [148–150], the embryo 
is still primarily supplied with fatty acids by the mother 
throughout embryo development, and the correspond-
ing requirements for fatty acids also vary as the embryo 
development stage changes, all of which have been con-
firmed in studies involving humans and livestock over the 
last 3 decades [151–156].

Role of functional fatty acids in early embryo development
The development from fertilized egg to blastocyst is a con-
tinuous and short process compared to the entire gesta-
tion period, during which any developmental disorder can 
have a negative impact on the pregnancy outcome. Fatty 
acids are important not only for the storage of energy sub-
strates but also for the maintenance of membranes, which 
is of significance because of the substantial increase in 
the plasma membrane surface area during embryo divi-
sion. The plasma membrane surface area increases by 74% 
between the 2- and 4-cell stages, implying an even larger 
increase in the late preimplantation period [157]. The fat 
content in the embryo decreases dramatically as it devel-
ops [158]. The embryo has a higher predilection for n-3 
functional fatty acids at this stage, which has been well 
evidenced. When compared to diet rich in palmitic acids 
and stearic acids, diet rich in ALA and LA can improve 
bovine blastocyst quality [159]. However, adding LA to 
bovine oocytes cultured in vitro reduces the oocyte cleav-
age and blastocyst rates, and further mechanistic research 
has revealed that LA inhibits the phosphorylation of the 
AKT and MAPK1/3 signaling pathways during oocyte 
maturation [160]. In addition, the results from mouse 
studies also indicate that LA decreases the development 
rate of fertilized eggs at the 1-cell and 2-cell stages and that 
LA produces a greater proportion of oxygen radicals, thus 
inducing oxidative stress [161]. Diet with a high n-3/n-6 
ratio boosts ALA and estradiol levels in bovine follicles and 
improve the embryo cleavage rate [162], while conjugated 
LA reduces the embryo development rate and hinders the 
expression of stearoyl-CoA desaturase-1 (a synthetase 
transforming stearic acid into OA) [163]. Another study 
involving pigs compared DHA and EPA and showed that 
adding DHA to IVM medium may benefit porcine oocyte 
development, whereas EPA displays cytotoxicity [164]. As 
demonstrated in a study on the influence of OA and pal-
mitic acid on the mouse embryo development in vitro, the 
combined use of the two acids had a positive effect on blas-
tocyst formation, whereas OA alone is superior to palmitic 

acid [165]. Similarly, a recent study on pigs found that 150 
µmol/L OA can enhance the blastocyst rate of partheno-
genetically activated porcine embryos [166]. Individual 
fatty acids have a positive effect on embryo development, 
but an appropriate combination of fatty acids appears to 
be more adapted to real physiological conditions and may 
have more specific effects. In studies examining the effects 
of palmitic acid, OA, ALA and ARA alone or in combina-
tion on 8-cell rat embryo development in vitro, OA, ALA 
and ARA improved the development from 8-cell embryos 
to blastocysts. This is especially true when carbohydrates 
were not present. OA is the most efficient among them, 
and the addition of palmitic acid did not improve embryo 
development with or without carbohydrate substrates. 
Addition of the mixture of four fatty acids is more effective 
for rat embryo development than single treatment with 
any of fatty acids tested [167]. The research on fatty acids 
have greatly improved with the maturation of biotechnol-
ogy and improvements in chemical synthesis techniques, 
but there is still a lack of understanding of the precise fatty 
acid nutrition in livestock embryos, the types of fatty acids 
in diet are often limited, and studies on single or combined 
lipid use are severely lacking.

Role of functional fatty acids in embryo development 
in the second and third trimesters of pregnancy
As pregnancy proceeds, the embryo gradually devel-
ops tissues and organs after the blastocyst stage, dur-
ing which fatty acid deficiency and maternal lipid 
metabolism disorders can easily result in fetal growth 
restriction, malnutrition, preterm delivery, and even 
miscarriage [168]. At this time, fatty acids play a posi-
tive role in hormone maintenance and energy metab-
olism, and active maternal fatty acid transport is 
required for maintaining fetal development. DHA and 
ARA are considered to be the most important struc-
tural components of the fetal central nervous system, 
and they are transferred through the placenta and accu-
mulate in the brain and other organs during fetal devel-
opment [169, 170]. Furthermore, recent research has 
revealed that medium-chain fatty acids also play a vital 
role in maternal-fetal metabolism [171–174]. Medium-
chain fatty acids are an ideal substrate for mitochon-
drial energy production, especially for fetuses because 
fetuses have a high requirement for energy due to the 
inefficiency of their enzyme system. Among them, 
caprylic acid, which is abundant in cord blood, is vital 
for the newborn energy supply [174]. Researchers have 
shown that lauric acid (C12:0) may affect PUFA in ani-
mal models [175] and that it may be a precursor to the 
n-3 LCPUFAs in the fetus under some conditions. In 
contrast to early gestation research, a substantial num-
ber of in vivo trials have been undertaken with regard 
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to late gestation; the effects of several types of func-
tional fatty acids added to livestock diet on reproduc-
tive performance are summarized in Table 3. As shown 
in the table, adding various functional fatty acids in late 
gestation can positively increase livestock reproduc-
tive performance and alter reproductive performance 
through hormone synthesis, antioxidative stress and 
energy supply.

Role of functional fatty acids in livestock 
during the lactation period
The lactation period is important for the rapid growth 
and development of young livestock and crucial for 
the transition of maternal livestock to the next repro-
ductive cycle. Maternal nutritional needs during the 
lactation period are determined by diet supplements 
and maternal body reserves. Maternal nutritional 
imbalances during the lactation period often cause 
malnutrition, growth retardation and even death in 
young livestock as well as a greater loss in maternal 
body reserves, which then impairs subsequent estrus 
and pregnancy and even shortens the durable years of 
maternal livestock [187, 188]. Fatty acids can reduce 
weight loss of maternal livestock and improve the 
hormones level for estrus and the ovarian and uterine 

microenvironment during mating while providing 
enough energy to maintain a high milk yield. There-
fore, fatty acid nutrition is highly important during 
the lactation period of maternal livestock. The lipid 
composition of milk is largely identical but with minor 

Table 3  Effects of dietary functional fatty acids on reproductive performance of livestock

Livestock Oil source Stage of pregnancy Main findings and potential mechanism Reference

Sows Butyrate Late pregnancy Shorten the weaning-to-estrus interval  [176]

Sows Butyrate Pregnancy and lactation Reduced the rate of gilts return to estrus, alter the 
composition of colostrum and enhance the growth 
rate of piglets

 [177]

Ewes Oleic Late gestation Increased PGE2 production in both endometrium 
and fetal allantochorion cells and increasing the 
ratio of PGE2 to PGF2α in endometrium cells

 [178]

Sows Conjugated linoleic acid Late pregnancy and lactation Reduced backfat thickness loss during the lacta-
tion period and leading to higher piglet weight at 
weaning

 [179]

Ewes Linoleic acid Late pregnancy Enhanced placental PG production by increased 
the supply of 20:4n-6

 [180]

Cows Conjugated linoleic acid Period started 21 d pre-calving and 
continued until 60 d in milk

Increased conception rate and serum concentra-
tions of glucose, cholesterol, triglyceride (TG), 
insulin, insulin-like growth factor-1(IGF-1), estradiol 
and progesterone were higher

 [181]

Cows α-linolenic acid 55 ± 22 d postpartum Increased the size of the ovulatory follicle and 
reduced pregnancy losses

 [182]

Cows α-linolenic acid 21 d before expected calving Decreased incidence of ketosis and severe metritis, 
reduced mortality, and tending to enhance fertility 
performance

 [183]

Sows Linoleic acid and α-linolenic acid Pregnancy Rapid return to estrus, increased maintenance of 
pregnancy and improved subsequent litter size

 [184]

Cows DHA From 27 to 147 d postpartum Enhanced embryo development based on changes 
in interferon-stimulated gene expression

 [185]

Sows Fish oil 60 d before parturition to weaning Increased subsequent litter and litter size  [19]

Sows Marine algae Five days prior parturition to breeding Increased subsequent litter and litter size  [186]

Table 4  Composition of fatty acids in milk of different livestock

Fatty acid, % Livestock

Prcine [189] Cow [190] Goat [191]

C4:0 (butyric) xinsuan - 2.95 1.37

C8:0 (caprylic) - 1.18 6.17

C12:0 (dodecanoic) 0.27 3.06 6.20

C16:0 (palmitic) 31.04 30.7 21.58

C18:0 (stearic) 4.38 9.12 8.58

C18:1 (oleic) 30.26 21.2 16.56

C18:2 (linoleic) 18.17 3.59 0.99

C18:3 (α-linolenic) 1.14 0.5 0.66

C20:3 (homogamma 
linolenic)

0.08 - 0.26

C20:4 (arachidonic) 0.44 - 0.05

C22:5 (eicosapentaenoic) 0.10 - 0.02

C22:6 (docosahexaenoic) 0.19 - -
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differences among different species. Table  4 summa-
rizes the composition of fatty acids in livestock milk 
[189–191]. In livestock production, changing the fatty 
acid composition of diet has been found to impact the 
lipid composition of milk and the milk yield [192–198]. 
Adding functional fatty acids to the diet of maternal 
livestock can influence the fatty acid composition of 
young livestock, which is a desired outcome [199, 200], 
and help boost neurodevelopment, immunology and 
intestinal protection [60, 201–205]. Fatty acids in sows 
and dairy cows during the lactation period have been 
extensively studied recently.

Role of functional fatty acids in sows during the lactation 
period
In actual sow reproduction, diet is dominated by grain 
and protein feeds and contains very little n-3 LCPUFAs. 
In recent years, the optimal n-6:n-3 ratio during the 
lactation period has been a research hotspot. It is now 
thought that the optimal n-6:n-3 ratio is about 9:1 or 
10:1 [206, 207]. Based on this, there has been substan-
tial interest in the last decade in determining whether 
adding n-3 functional fatty acids affects the health of 
sows and piglets during the lactation period. According 
to recent research, n-3 functional fatty acids can lower 
mortality [208–210] and increase the weight of weaned 
piglets [19], as well as regulate piglet immune status by 
increasing the content of n-3 PUFAs in immune cells 
and lowering the synthesis of proinflammatory eicosa-
noids [211]. Additionally, n-3 functional fatty acids 
can improve glucose absorption in the piglet jejunum 
and maintain intestinal stability [212]. Supplementing 
short- and medium-chain functional fatty acids in the 
diet of sows during the lactation period also has posi-
tive effects. As reported, adding butyric acid during the 
lactation period can enhance the acetylation of H3K27 
in piglet skeletal muscle and increase the expression 
of PPARγ, thereby affecting lipid metabolism in pig-
let skeletal muscle and improving piglet growth [213]. 
During the lactation period, adding medium-chain 
functional fatty acids like lauric acids has a substantial 
antibacterial effect and boosts immunity in sows and 
piglets by preventing harmful bacterial growth [214]. 
According to a comprehensive comparative study, add-
ing butyric acid to the diet during the lactation period 
had a stronger influence on intestinal health than add-
ing medium-chain fatty acids or n-3 functional fatty 
acids, with a greater decline in piglet preweaning 
mortality [176]. The addition of medium-chain fatty 
acids to the diet, on the other hand, decreased the 
duration between weaning and estrus more signifi-
cantly than butyric acid or n-3 functional fatty acids. 

N-3 functional fatty acids added to diet increase the 
fat and protein contents in colostrum to the greatest 
extent. The above studies demonstrate that there are 
differences in the way different types of functional fatty 
acids work during the lactation period. There is a lack 
of more research clarifying the use of various types 
of functional fatty acids in sows during the lactation 
period, but systematic and reasonable fatty acid nutri-
tion is highly necessary for sows during the lactation 
period.

Role of functional fatty acids in dairy cows 
during the lactation period
Unlike sows, cows in the lactation period are tasked with 
milk production in enormous quantities to meet human 
demand for dairy products while meeting the nutritional 
needs of 1 or 2 calves, and the major goal of cow pro-
duction is to produce high-yield and high-quality milk 
for human. Therefore, high-yielding cows have greater 
energy requirements beyond their ability to absorb 
energy from diet [215]. Moreover, corn silage-based diets 
have replaced pasture feeding in modern cows, and the 
predominant source of fatty acids has transitioned from 
ALA to LA [216]. As a result of reduced pasture feeding, 
the amount of conjugated LA produced by rumen biohy-
drogenation has also decreased. Adding fatty acids to diet 
can boost energy density without increasing rumen acid 
production [217]. The 2 primary products to minimize 
the effect of fat on rumen fermentation are extruded 
saturated free fatty acids and calcium salts of unsaturated 
fatty acids. However, the calcium salts of unsaturated 
fatty acids are not fully protected in the rumen, and cal-
cium ion decomposition facilitates the biohydrogenation 
of unsaturated fatty acids in the rumen [218]. The focus 
of research has been on improving the physicochemical 
properties of fatty acid supplements to meet the fatty acid 
requirements of cows, and it is now widely accepted that 
saturated fatty acid intake should be reduced and polyun-
saturated functional fatty acid intake should be increased, 
especially the intake of n-3 functional fatty acids [190], 
which is important for the health of humans who rely on 
dairy products. Due to the fact that in contrast to primi-
tive societies, the modern human diet is rich in saturated 
fatty acids and n-6 PUFAs but deficient in n-3 PUFAs, 
and n-3 PUFA deficiency is linked to the development 
of coronary heart disease and other noninfectious dis-
orders [219, 220]. Compared with those from placental 
transfer, fatty acids from colostrum or milk, on the other 
hand, have a stronger influence on calves’ development 
and health [221, 222]. Furthermore, in a recent study, 
n-3 functional fatty acids in colostrum have been found 
to have favorable benefits on calf inflammatory responses 
[223]. In both cows and calves, adding ALA, either alone 
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or in combination with LA, to diet can boost both aver-
age daily gains and feed efficiency [221, 224].

Summary
In conclusion, livestock can obtain functional fatty 
acids through feed and endogenous synthesis, these 
fatty acids play important roles throughout the repro-
ductive cycle of livestock. The role of functional fatty 
acids in livestock reproduction is affected by the car-
bon chain length and degree of unsaturation of the 
fatty acids. Through continuous improvement of 
experimental techniques and analytical methods, 
some key mechanisms of functional fatty acids have 
been elucidated. Fatty acids can provide energy for 
oocyte and embryo development through β-oxidation, 
and they also play a role in the synthesis of lysophos-
phatidic acid, PG and steroid hormones, thereby 
influencing early embryo development and embryo 
implantation. Fatty acids are also closely associated 
with placental vascular development, lactation perfor-
mance, milk quality and young livestock development. 
However, the requirements of livestock for fatty acid 
nutrition during the reproductive process are dynamic 
and diverse, but these research results are based on 
single fatty acids; the ideal fatty acid requirements for 
each stage of reproduction are unknown.

Obviously, enhancing livestock reproductive perfor-
mance is a challenge involving the entire reproductive 
cycle, with close and intricate links between stages, 
and negative effects at any stage will have a long-term 
impact on the entire reproductive process. Therefore, it 
is important to reveal the regulation function of fatty 
acids and their metabolites in each key stage of the 
reproductive cycle. Currently, the researches on ideal 
fatty acid mode are blank. It has great significance to 
establish an ideal fatty acid pattern for specific stages to 
improve reproductive potential in livestock. The ideal 
fatty acid model requires systemic researches to elu-
cidate the order of importance and the ratio of differ-
ent fatty acids or the relevant derivatives, as well as the 
related influences on the performance and physiologi-
cal function in livestock.
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