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Abstract 

Integrins are a highly complex family of receptors that, when expressed on the surface of cells, can mediate recipro-
cal cell-to-cell and cell-to-extracellular matrix (ECM) interactions leading to assembly of integrin adhesion complexes 
(IACs) that initiate many signaling functions both at the membrane and deeper within the cytoplasm to coordinate 
processes including cell adhesion, migration, proliferation, survival, differentiation, and metabolism. All metazoan 
organisms possess integrins, and it is generally agreed that integrins were associated with the evolution of multicel-
lularity, being essential for the association of cells with their neighbors and surroundings, during embryonic develop-
ment and many aspects of cellular and molecular biology. Integrins have important roles in many aspects of embry-
onic development, normal physiology, and disease processes with a multitude of functions discovered and elucidated 
for integrins that directly influence many areas of biology and medicine, including mammalian pregnancy, in par-
ticular implantation of the blastocyst to the uterine wall, subsequent placentation and conceptus (embryo/fetus 
and associated placental membranes) development. This review provides a succinct overview of integrin structure, 
ligand binding, and signaling followed with a concise overview of embryonic development, implantation, and early 
placentation in pigs, sheep, humans, and mice as an example for rodents. A brief timeline of the initial localization 
of integrin subunits to the uterine luminal epithelium (LE) and conceptus trophoblast is then presented, followed 
by sequential summaries of integrin expression and function during gestation in pigs, sheep, humans, and rodents. 
As appropriate for this journal, summaries of integrin expression and function during gestation in pigs and sheep are 
in depth, whereas summaries for humans and rodents are brief. Because similar models to those illustrated in Fig. 1, 
2, 3, 4, 5 and 6 are present throughout the scientific literature, the illustrations in this manuscript are drafted as Viking 
imagery for entertainment purposes.
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Introduction
Integrins are receptors on the surface of cells that medi-
ate reciprocal cell-to-cell and cell-to-extracellular matrix 
(ECM) interactions [1]. All metazoan organisms possess 
integrins, and it is generally agreed that integrins were 
associated with the evolution of multicellularity, being 
essential for the association of cells with their neighbors 
and surroundings, during embryonic development and 
many aspects of cellular and molecular biology. Integrins 
have not been detected in prokaryotes, plants, or fungi 
[2], but even the simplest invertebrates have integrins 
[3, 4]. The most primitive of animals that demonstrate 
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bilateral left and right symmetry, a head and a tail, and 
a ventral-dorsal axis have at least two integrin alpha/
beta (αβ) heterodimers and αβ-heterodimers persist in 
flies, nematodes, and vertebrates, with extensive expan-
sion of the αβ-heterodimer repertoire in vertebrates [5]. 
Indeed, all human cells, except mature red blood cells, 
have one or more integrins [6]. The integrin receptor 
family was first recognized in the 1980s and has since 
become amongst the better-understood of cell adhesion 
receptors [7]. Integrin biochemistry is complicated. Inte-
grins assemble into multiple αβ-heterodimer receptors, 
bind a large and varied array of ligands, and in addition 
to their role in physical adhesion they activate signaling 
pathways at least as complex as those activated by the 
tyrosine kinase and G-protein-coupled receptors, which 
integrins often cooperate with during cell signaling. Fur-
ther, their physical connections to both the cytoskeleton 
on the inside of the cell and ECM on the outside of the 
cell mediate mechanotransduction as well as biochemi-
cal signaling [8]. Integrins have important roles in many 
aspects of embryonic development, normal physiol-
ogy, and disease processes with a multitude of functions 

discovered and elucidated for integrins that directly 
influence many areas of biology and medicine [6]. One of 
these areas is mammalian pregnancy [9–11].

Integrin structure, ligand binding, and signaling
In general, integrins consist of noncovalently linked α- 
and β-subunits. Each polypeptide subunit passes through 
the plasma membrane once, and has a large extracellu-
lar domain of greater than 1,600 amino acids, and a short 
cytoplasmic domain of about 20–50 amino acids [7, 12, 
13]. Together these paired subunits are termed integrins 
(this term will be used for the remainder of this review 
to describe an αβ-heterodimer) or αβ-heterodimers or 
integrin receptors (Fig. 1). In mammals, 8 β-subunits can 
associate with 18 α-subunits to form 24 distinct integrins 
[6] (Fig. 2). Most integrins can bind to a wide variety of 
ligands, and many ligands can bind to multiple integrins 
[14] (Fig. 3).

Using the αvβ3 integrin as an example (Fig.  4), the 
terminal or “head” regions of the αv and β3 extracel-
lular domains include an α-subunit β-propeller and a 
β-subunit I/A domain. These domains complex together 

Fig. 1  The Saga of integrins: Basic integrin structure. Integrins are dominant glycoproteins in adhesion cascades. They comprise a ubiquitous family 
of cation-dependent, heterodimeric [one α-subunit (chain) non-covalently linked to one β-subunit (chain)], intrinsic transmembrane glycoprotein 
receptors that mediate cellular differentiation, motility, and adhesion. Integrins are grouped according to the ligands they bind. Those that carry 
out ligand binding through integrin receptor recognition of small peptide sequences include integrins that bind arginine-glycine-aspartic acid 
(RGD; depicted here), leucine-aspartic-acid-valine (LDV), and glycine-phenylalanine-hydroxyproline-glycine-glutamic acid-arginine (GFOGER) 
within collagen. Integrins are also grouped into those that bind laminin, and leukocyte-specific receptors
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to form the ligand binding region of the integrin, and the 
structure of the I/A domain is that of a Rossmann fold 
with a core of parallel β sheets surrounded by amphip-
athic α helices, a structure characteristic of a large group 
of proteins involved in protein–protein interactions [6, 
15–17]. Residues from the loops of the I/A domain coor-
dinate a metal ion-dependent adhesion site (MIDAS) 
with divalent cations, and divalent cations are required 

for integrin binding to ligands [15]. The amino terminal 
of the β-propellor of the α-subunit is attached to three 
β-sandwich domains, the thigh, calf 1, and calf 2 of the 
“leg” of the subunit. Although the β-subunit I/A domain 
lies at the distal end of the molecule, it does not consti-
tute the amino-terminal, rather it inserts into a loop of 
a β-sandwich hybrid domain. The remainder of the “leg” 
of the β-subunit is composed of four tandem cystine-rich 

Fig. 2  The Saga of integrins: The integrin receptor (integrin) family. The integrin family can form at least 24 distinct pairings of its 18 α-subunits 
and 8 β-subunits. Integrins that bind to arginine-glycine-aspartic acid (RGD) sequences in ligands include αvβ1, αvβ3, αvβ5, αvβ6, αvβ8, α5β1, 
α8β1, and αIIbβ3. Those that bind to laminin include α3β1, α6β1, α6β4 and α7β1. Integrins that bind the glycine-phenylalanine-hydroxyprol
ine-glycine-glutamic acid-arginine (GFOGER) sequence in collagen include α1β1, α2β1, α10β1 and α11β1. Those that are leukocyte-specific 
receptors include α4β1, αLβ2, αMβ2, αDβ2 and αXβ2
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repeats, the first two of which remain poorly resolved 
while the third and fourth are epidermal growth factor 
(EGF)-like folds, ending with a carboxyl terminal β-sheet 
β-tail domain (Fig. 4) [6, 18].

An important aspect of integrins is their ability to 
transmit signals both “outside in” and inside out” that are 
transmitted through large conformational changes in the 
extracellular domains in the integrin [6, 19–21]. Although 
initially thought otherwise [18, 19], it is now accepted 
that the subunits of inactive integrins are bent over 
between the thigh and calf domains of the α-subunit and 
in the third and fourth EGF-like regions of the β-subunit 
to produce a 135-degree downward angle [22, 23]. Active 
integrins have an extended shape and there is separa-
tion of the legs of the α- and β-subunits (Fig.  4). This 
strongly suggests that activation of the ligand binding 
domain and ligand binding are coupled to the straight-
ening and separation of the legs of the α- and β-subunits 
resulting in separation of the transmembrane and cyto-
plasmic domains of the integrins to allow interactions 
with cytoskeletal and signal transduction molecules for 

outside-in signaling [24]. Inside-out signaling is likely 
mediated via the physical separation of the cytoplasmic 
domains of the subunits via intracellular molecules such 
as talin (TLN1), and perhaps others, resulting in activa-
tion of the extracellular head of the integrin for ligand 
binding (Fig.  5) [6]. Indeed, the head domain of TLN1 
binds to the cytoplasmic domain of the β3-subunit, but 
not to the cytoplasmic domains of α-subunits, and in 
doing so separates the β3-subunit cytoplasmic tail from 
the α-subunit cytoplasmic tail and activates the integ-
rin [25, 26]. Multiple proteins bind to integrin tails, and 
another intracellular candidate for integrin activation is 
focal adhesion kinase (FAK) [6].

The cytoplasmic domains of integrins lack enzymatic 
activity and transduce signals through cytoplasmic adap-
tor proteins that connect the integrin to the cytoskeleton, 
kinases, and growth factor receptors. As integrins bind 
ECM proteins they cluster within the plasma membrane 
and interact with many actin-associated proteins includ-
ing TLN1, α-actinin, vinculin (VCL), tensin, and paxillin 
to organize actin filaments into larger stress fibers that 

Fig. 3  The Saga of integrins: Integrin iigands. More than one integrin receptor (integrin) can recognize a specific ECM ligand, and more than one 
ligand can bind a specific integrin. Depicted are Viking ships representing ECM proteins that have been localized to implantation sites in mammals 
carrying shields representing integrins that potentially bind to these proteins
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result in more integrin clustering and eventual assembly 
of ECM proteins, integrins and cytoplasmic cytoskel-
etal and signaling molecules on both sides of the plasma 
membrane. These are termed integrin adhesion com-
plexes (IACs) (Fig. 5) [27]. Integrins also activate various 
kinases, some of which phosphorylate cytoskeletal pro-
teins to regulate cell shape and migration, and integrins 
recruit signaling molecules that regulate cell adhesiveness 
to the ECM [28]. The proteins found in IACs are called 
the integrin adhesome, and IACs convert spatiotempo-
ral properties of the ECM into intra-cellular and inter-
cellular/ECM signaling that has wide-ranging outcomes. 
The composition of IACs is complex with the potential 
for interactions with up to 2,412 proteins [8, 29, 30]. The 
“consensus adhesome” represents links between integrins 
and the actin cytoskeleton and includes 60 proteins that 
are enriched at least two-fold when binding to fibronec-
tin (FN1) in multiple IAC datasets [31]. Some members 

of this “consensus adhesome” are kindlin-integrin-linked 
kinase (ILK)- particularly interesting new cysteine-his-
tidine-rich protein (PINCH), FAK-paxillin, TLN1-VCL, 
and α-actinin-zyxin-vasodilator-stimulated phosphopro-
tein (VASP) (Fig. 5) [8, 30, 31].

The ability of cells to simultaneously utilize multiple 
integrins to bind sites exposed at differing angles within 
ECM networks provides the cell with a topological map 
of its surroundings that can be converted to intracel-
lular signaling that supports responses to the micro-
environment in the form of migration, differentiation, 
proliferation and/or growth, the synthesis of proteins, 
or altered metabolism. Therefore, the phenotype of 
cells can be influenced by changes in the cell’s micro-
environment in powerful and eloquent ways [8]. Preg-
nancy, particularly implantation of the blastocyst to/
into the uterine wall and early placental development, 
involves unique and rapid alterations to the ECM and 

Fig. 4  The Saga of integrins: Integrin binding and activation. Shown is the structure of the unliganded (Inactive) and liganded (Active) αvβ3 
integrin with the αv-subunit (chain) in orange and the β3-subunit (chain) in blue. In the inactive form the propeller, I/A, hybrid and thigh domains 
are bent over towards the carboxyl terminal of the legs of the α- and β-subunits which are inserted through the plasma membrane and connected 
to short cytoplasmic domains. The organization of the domains are difficult to discern in this configuration but are more easily resolved in the active 
configuration. In the active form the α- and β-subunits are unfolded freeing the propeller and I/A domains for ligand binding. Activation 
of the integrin is driven by either ligand binding or by effects on the cytoplasmic domains leading to straightening of the α- and β-subunits 
and separation of the legs. The straightening of the legs separates the cytoplasmic domains and allows binding of cytoplasmic proteins 
and intracellular signaling. These changes in integrin configuration are reversible and operate in either direction, outside-in or inside-out
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interactions between the ECM and cells to support 
significant tissue remodeling required for growth and 
development of the conceptus (embryo and associated 
placental membranes). Serious consideration has been 
given to the involvement of integrins in these complex 
events. The remainder of this review focuses on the 
potential roles of integrins in mammalian pregnancy.

Embryonic development, implantation and early 
placentation
Considerable variability exists among species relative to 
the histogenesis and organization of the placenta; how-
ever, placental trophoblast interactions with maternal 
uterine tissue remain extensive in all species, and this 
allows for the close juxtaposition of the microcircula-
tory systems of the uterus and placenta for the transport 
of nutrients from the mother to the embryo/fetus [32]. 

Fig. 5  The Saga of integrins: Integrin adhesion complexes. When the extracellular domains of integrins bind to ECM ligands they cluster 
within the plasma membrane and the cytoplasmic domains of the integrins become closely associated with the cytoskeleton resulting 
in the assembly of aggregates of 1) integrins at the surface of the cell, 2) cytoskeletal proteins within the cell, and 3) proteins within the ECM 
which are large enough to be observed by immunofluorescence microscopy and are known as integrin adhesion complexes (IACs). The 
proteins recruited to IACs, the integrin adhesome, perform many signaling functions both at the membrane and deeper within the cytoplasm 
to coordinate processes including cell adhesion, migration, proliferation, survival, differentiation, and metabolism. The integrin adhesome is highly 
complex and only cryptically alluded to in the figure. The “consensus adhesome” represents links between integrins and the actin cytoskeleton 
and the adaptor proteins that directly link integrins with actin are α-actinin, filamin, talin, and tensin. Despite the complexity of IACs, they are 
dynamic, and turnover can occur within a few minutes
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Although the timing and location of key events varies, 
the early stages of embryonic development are similar 
among pigs, sheep, humans, and mice/rats, the species 
of focus in this review. After fertilization the zygote 
undergoes the first cleavage division to form the 2-cell 
embryo, and cleavage divisions continue through the 
8–16 cell stage, when transcriptome activation occurs. 
These divisions culminate in formation of the solid mass 
of cells (blastomeres), called the morula, that remains 
encased in the zona pellucida of the oocyte. The pluri-
potent blastomeres differentiate into the blastocyst con-
sisting of an inner cell mass (ICM) and a hollow circular 
space, called the blastocoel, surrounded by a single layer 
of trophoblast cells. The ICM develops into the primi-
tive ectoderm, mesoderm and endoderm of the embryo, 
and the trophoblast represents the initial placenta. 
Together the ICM and trophoblast are termed the blas-
tocyst [33]. The blastocyst then hatches from the zona 
pellucida and the trophoblast cells of this circular blas-
tocyst attach to the surface of the uterine luminal epi-
thelium (LE) to begin implantation in humans and mice. 
In pigs and sheep, the conceptus increases in size before 
undergoing elongation, a rapid morphological transition 
from circular to tubular to filamentous forms of what is 
now termed the conceptus. Conceptus elongation sub-
stantially increases the surface area of placental troph-
oblast that attaches to the uterine LE, presumably to 
maximize the opportunity for nutrient and gas exchange 
between the conceptus and uterus in these species in 
which the conceptus does not invade into the uterine 
wall during implantation [32, 33].

Perhaps nowhere else in the mammalian body do the 
apical domains of the surface epithelium of one organ 
physically attach to the apical domains of the surface epi-
thelium of another organ. This arrangement is unique to 
pregnancy. Thus, it is not surprising that attachment of 
the conceptus to the uterine LE to initiate implantation 
is highly synchronized and requires reciprocal secretory 
and physical interactions between a developmentally 
competent conceptus and the uterus during a restricted 
period of the uterine cycle termed the “window of recep-
tivity” [34]. Interactions between the apical surfaces of 
the uterine LE and trophoblast progress from a non-
adhesive or pre-contact phase to an apposition phase 
and conclude with adhesion. Conceptus attachment first 
requires the removal of mucins from the glycocalyx of the 
uterine LE that sterically inhibit adhesion. The removal 
of these mucins allows for direct physical interactions 
between a mosaic of carbohydrates and lectins at the api-
cal surfaces of the opposing uterine LE and conceptus 
trophoblast cells which contribute to initial attachment 
of the trophoblast to the uterine LE [35, 36]. These low 
affinity contacts are then strengthened by a repertoire of 
adhesive interactions between integrins and ECM mol-
ecules that appear to be the dominant contributors to 
stable adhesion for implantation [37–39] (Fig. 6 [39–42]).

Implantation can be defined as the beginning of pla-
centation, and placentation differs significantly among 
species [43, 44]. Pigs have a true epitheliochorial placenta 
in which separation of placental and uterine vasculatures 
is always maintained representing a substantial bar-
rier to hemotrophic nutrient transport from the mother 

Fig. 6  The Saga of integrins: The implantation cascade. Depicted is a generalized summary of the attachment cascade for implantation in humans 
in which the conceptus is hypothesized to roll across the uterine surface until it is slowed and tethered to the uterine luminal epithelium (LE) first 
via interactions with mucins, followed by carbohydrate-lectin binding, and completed when firm adhesion is mediated through integrins binding 
to ECM bridging ligands, in a manner similar to the extravasation of leukocytes from the vasculature [39, 40]. Similar cascades are postulated 
for pigs, sheep and mice; however, the conceptuses of pigs and sheep likely do not roll across the uterine surface. Instead, the trophoblast cells 
proliferate and migrate across the uterine surface as the conceptuses undergo elongation [41, 42]



Page 8 of 19Johnson et al. Journal of Animal Science and Biotechnology          (2023) 14:115 

to fetus. To overcome this, the interhaemal distance is 
minimized through degradation of much of the con-
nective tissue separating the uterine LE and trophoblast 
from their underlying capillary beds, the uterine-placen-
tal interface is extensively remodeled to form folds that 
increase the area of uterine-placental association across 
the entire placenta, and pockets of the trophoblast lining 
of the placenta that are not attached to the uterine LE, 
called areolae, form at the openings of the uterine glands 
to receive histotroph [42, 45, 46]. Sheep have synepitheli-
ochorial placentae in which trophoblast cells migrate into 
the uterine LE and fuse with other cells to form multinu-
cleated syncytia. The placenta organizes to form placen-
tomes in which highly branched villous placental folds 
protrude into crypts in the uterine caruncular tissue, and 
interplacentomal regions are characterized by uterine 
glands and areolae [41, 47]. Humans have hemochorial 
placentae in which restricted displacement of uterine LE 
cells allows syncytiotrophoblast cells to invade into the 
uterine stroma and leave open lacunae in their wake, fol-
lowed by a second wave of invasion by cytotrophoblast 
cells that remodel uterine spiral arteries to facilitate the 
flow of blood into the lacuna. The uterine stroma decidu-
alizes in response to maternal production of progester-
one [40, 48, 49]. Mice also have a hemochorial placenta 
in which signals from the trophoblast that attaches to the 
uterine LE initiate decidualisation of the uterine stroma. 
Then the uterine LE at sites of implantation undergo 
cell death or entosis as trophoblast cells invade into the 
uterus with primary trophoblast giant cells aligning 
adjacent to the decidua, and eventual fusing of spongio-
trophoblast with the allantois forms a labyrinthine layer 
in which extensive intermingling of maternal blood and 
placental blood vessels occurs [49, 50]. Clearly conceptus 
implantation and placental development requires exten-
sive cell adhesion, proliferation, migration and morpho-
genesis, all activities potentially mediated through the 
actions of integrins.

A brief timeline of the initial localization of integrin 
subunits to the uterine LE and conceptus 
trophoblast
It is generally accepted that integrins expressed at the 
apical surfaces of conceptus trophoblast and uterine LE 
cells bind bridging ligands to attach the conceptus to the 
uterus for implantation, but in the early 1990s this was a 
unique and somewhat unprecedented role to propose for 
integrins because the apical surface of epithelial cells is 
not normally a site of intercellular interactions. In 1992, 
two studies localized multiple integrin subunits within 
the endometrium of women during the menstrual cycle, 
and one study noted that expression of some of these 
integrins was regulated by stage of the menstrual cycle. 

The integrin subunits α1, αv, and β3 increased in endo-
metria during the secretory phase of the menstrual cycle 
and β3 was localized to uterine LE; however, an apical 
distribution of the integrin subunits was not demon-
strated [51]. The second study reported localization of 
the α1-, α3-, α5-, α6- and β1-subunits to the uterine LE 
of secretory stage endometria, but, again, apical distri-
bution of these subunits was not confirmed [52]. In the 
same year the first integrin subunit, β1, was found to 
be expressed by human blastocysts prior to implanta-
tion with particularly intense immunostaining observed 
in hatching blastocysts [53]. In 1993, the localization of 
the α3- and α6-subunits to the uterine LE of women was 
again reported, and the α2- and α4-subunits were added 
to the list of integrin subunits expressed by uterine LE 
[54]. Also, in 1993, Sutherland and co-workers examined 
integrin expression by the trophoblast of mouse blasto-
cysts during development through the peri-implantation 
period of pregnancy. Although multiple integrin subunits 
were shown to be expressed by blastocysts, only αvβ3 
integrin was confirmed to be present at the apical surface 
of trophoblast cells by immunofluorescence microscopy 
[55]. Significantly, in 1994, Aplin and co-workers clearly 
demonstrated the presence of the β5-subunit at the api-
cal domain of the uterine LE of women where β5 could 
potentially serve at a mediator of attachment of uterine 
LE to trophoblast [56]. By 1995 this same research group 
localized αv-, α3-, β1-, β3-, and β5-subunits on human 
blastocysts [57]. Bowen et  al. [58] established the pres-
ence of multiple integrin subunits at the apical surfaces 
of the uterine LE and conceptus trophoblast of pigs. The 
integrin subunits α4, α5, αv, β1, β3 and β5 were local-
ized to porcine implantation sites on d 12 through 15 of 
gestation [58]. In 1999, the integrin subunits αv and β3 
were localized to the apical surfaces of the uterine LE and 
conceptus trophoblast on d 16 of gestation, during the 
attachment phase of implantation in sheep, and in 2001 
αv-, α4-, α5-, β1-, β3- and β5-subunits were shown to be 
constitutively expressed on these tissue surfaces during 
the peri-implantation period of pregnancy [59, 60].

Summary of integrin expression and function 
during gestation in pigs
Progesterone dominates the uterine environment during 
the establishment of pregnancy in pigs, but other factors 
are required to maintain a successful pregnancy. These 
include the secretion of estrogens, prostaglandins, inter-
leukin-1 beta and interferons gamma and delta from the 
conceptus, and secretions of histotroph from the uter-
ine LE and glandular epithelium (GE) (reviewed in [32, 
42, 61–69]. Within this complex environment porcine 
conceptuses undergo the most extensive elongation of 
any species that has been studied in depth. The day 10 
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blastocyst develops a dense band of cells called the elon-
gation zone, composed of both trophoblast and endo-
derm, that extends from the ICM to the tip of the ovoid 
blastocyst. Elongation of the trophoblast and endoderm 
then begins and within the span of a few hours the rate of 
elongation increases to 30 to 45 mm/h from the 10 mm 
blastocyst to the 100 to 200 mm long filamentous concep-
tus. There is further rapid elongation to 800 to 1,000 mm 
in length by d 16 of pregnancy mediated through altera-
tions in the microfilaments and junctional complexes of 
trophoblast cells and formation of filopodia by endoder-
mal cells. This last period of elongation involves both cell 
proliferation and cellular hyperplasia, and each concep-
tus within the litter achieves maximum surface area for 
contact between trophoblast and uterine LE to facilitate 
uptake of nutrients from uterine LE and uterine GE, 
which increase coincidentally with elongation of the 
conceptuses [62]. Overlapping these elongation events 
is the attachment phase of implantation which roughly 
occurs from d 13 to 26 of pregnancy in pigs. Throughout 
implantation, the glycocalyx that extends from the apical 
surface of the uterine LE is thicker than at the surface of 
the trophoblast. On d 13 and 14, the uterine LE develops 
protrusions that become enclosed by caps of trophoblast 
cells that serve to physically immobilize the conceptus, 
and by d 14 there is close apposition between the apical 
plasma membranes of trophoblast and uterine LE. Inter-
digitating microvilli form between these plasma mem-
branes on d 15 and 16, and then the interface becomes 
increasingly complex between d 15 and 20 of pregnancy. 
This transition is characterized by the development of 
apical domes on uterine LE closely apposed to the troph-
oblast and long cytoplasmic extensions into a luminal 
space between the apical domes. Finally, adhesion tran-
sitions into placentation through ever-increasing devel-
opment of interdigitating microvilli occurs between the 
uterine LE and trophoblast by d 26 of gestation [70].

Although it has been demonstrated that progesterone 
downregulates expression of mucin-1 (MUC1) at the api-
cal surfaces of uterine LE [58, 71], interactions between 
carbohydrates and lectins during the adhesion cascade 
of pigs have not been systematically investigated. How-
ever, it is likely that these carbohydrate ligands and their 
lectin receptors, expressed at the apical surfaces of the 
conceptus trophoblast and uterine LE, undergo a series 
of attach-and-release events resulting in maximal appo-
sition of the conceptus trophoblast to the uterine LE, 
similar to “rolling and tethering” proposed for the initial 
attachment of human blastocysts to the uterine wall [40]. 
These low affinity contacts are then likely stabilized by 
adhesion between a repertoire of integrins and ECM pro-
teins [37, 72]. Eight integrin subunits are expressed at the 
apical surface of both the conceptus trophoblast and the 

uterine LE of pigs. These include α1, α3, α4, α5, αv, β1, β3 
and β5. The expression of the α4-, α5- and β1-subunits 
on the uterine LE increases during the peri-implantation 
period of pregnancy, and treatment with progesterone 
increases the expression of these integrin subunits at 
the apical surface of uterine LE cells of cyclic pigs [58]. 
In  vitro studies strongly support these in  vivo data. 
Trophoblastic vesicles generated from d 12 and 15 por-
cine conceptuses and polarized uterine LE cells grown 
on matrigel express all of the integrin subunits observed 
on conceptuses. Treatment of these cultures with estro-
gen results in the upregulation of α1-, α4- and α5-subunit 
expression, treatment with progesterone results in upreg-
ulation of the α1-, α4-, α5- and β1-subunits, and co-
treatment with estrogen and progesterone upregulates 
the α1-, α3-, α4-, α5- and β1-subunits [71]. It is notewor-
thy that immunofluorescence microscopy has localized 
the integrin subunits α4, α5, αv, β1, β3 and β5 at sites of 
implantation on d 12 through 15 of gestation [58]. Fur-
ther, immunofluorescence microscopy strongly suggests 
that the αv-, β1-, β3- and β5-subunits incorporate into 
IACs at sites of implantation in pigs, because the stain-
ing pattern of each of these subunits revealed large aggre-
gates at the apical domains of uterine LE and trophoblast 
from sites of implantation on d 16 through 24 of gesta-
tion [73, 74].

Collectively, the subunits detected in the uterine LE 
and trophoblast of pigs have the potential to assemble 
into the αvβ1, αvβ3, αvβ5, α4β1 and α5β1 integrins, and 
these integrins may function in adhesion with FN1, vit-
ronectin (VTN), the latency associated peptide (LAP) 
of transforming growth factor beta (TGFβ), the inter-α-
trypsin inhibitor heavy chain-like protein (IαIH4), and/
or osteopontin [OPN, secreted phosphoprotein 1 (SPP1)] 
expressed at the uterine-placental interface of pigs [37]. 
Three integrins expressed by porcine uterine LE and 
trophoblast, αvβ3, α4β1 and α5β1 (see Fig.  3) can bind 
FN1, and the αvβ3 integrin is considered the major VTN 
receptor. Both FN1 and VTN are present in uterine flush-
ings during the peri-implantation period and at sites of 
implantation in pigs [58]. TGFβ is released from cells in a 
latent form due to non-covalent association with the LAP. 
This LAP contains an RGD sequence that can bind to the 
αvβ1 and αvβ3 integrins present at implantation sites, 
and TGFβ activity, and therefore the availability of LAP 
to bind integrins on uterine LE and conceptus tropho-
blast, increases within the intrauterine environment dur-
ing the peri-implantation period of pigs [75]. The IαIH4 
protein contains a von Willebrand type A domain that 
is a recognition site for the αvβ3 integrin receptor, and 
both IαIH4 protein expression and kallikrein enzymatic 
activity, increase within the uterine environment during 
the peri-implantation period of pregnancy in pigs [76, 



Page 10 of 19Johnson et al. Journal of Animal Science and Biotechnology          (2023) 14:115 

77]. OPN is the most promiscuous of these ligands and 
interacts with αvβ1, αvβ3, αvβ5, α4β1 and α5β1 integrins. 
It has been established that OPN is prominent within the 
intrauterine environment of pigs during the peri-implan-
tation period of pregnancy [77–80].

Affinity chromatography followed by immunopre-
cipitation was used to demonstrate the direct binding of 
specific integrins to ligands on porcine uterine epithelial 
(pUE) and trophoblast (pTr2) cells [73, 74]. Detergent 
extracts of surface-biotinylated pUE and/or pTr2 cells 
were incubated with either LAP-Sepharose or OPN-
Sepharose and the proteins that bound to LAP and OPN 
were eluted with ethylenediaminetetraacetic acid (EDTA) 
to chelate cations and release bound integrins. For the 
LAP experiments, the eluted fractions from pTr2 extracts 
were subjected to immunoprecipitation using antibod-
ies to the integrin subunits αv, β1, β3, β5, β6, and β8, and 
each of these subunits was shown to bind LAP [74]. For 
the OPN experiments, the eluted fractions from both 
pUE and pTr2 extracts were subjected to immunoprecipi-
tation using antibodies to the integrin subunits αv, α4, α5, 
β1, β3, β5 and β6, and it was determined that the αvβ6 
integrin on pTr2 cells and αvβ3 integrin on pUE cells 
directly bound to OPN [73]. Integrin binding to OPN 
promoted dose-, RGD-, and cation-dependent attach-
ment of pTr2 and pUE cells, and stimulated haptotactic 
pTr2 cell migration directionally along a physical gradient 
of nonsoluble OPN [73]. Knockdown of the αv-subunit 
in pTr2 cells by siRNA reduced pTr2 attachment to OPN 
and FN1, but did not affect attachment to type I collagen, 
as this protein does not bind to αv-subunit-containing 
integrins (see Fig.  3) [81]. Finally, the αv-subunit co-
localized with TLN1 in IACs generated at the apical 
domain of pTr2 cells around OPN-coated microspheres 
briefly cultured at the top of the cells [60, 73]. Collec-
tively, results support that integrins directly bind OPN on 
pUE cells, and bind to LAP, FN1 and OPN on pTr2 cells, 
and this binding stimulates attachment to FN1 and OPN, 
and OPN-mediated haptotactic cell migration, and IAC 
assembly.

Integrin expression at the uterine-placental interface 
of pigs is not limited to the peri-implantation period of 
pregnancy. Integrin mRNAs for the subunits αv, α2, β1, 
β3, β5, β6, and β8 have been detected in both endome-
trial and placental tissues from Days 30–90 of gestation 
in pigs [82]; however, although αv-, β3- and β6-subunit 
mRNAs and proteins are present at the uterine-placen-
tal interface through d 60 of gestation, IACs containing 
these subunits are not observed by day 50, suggesting 
that as placentation progresses, subsequent folding at 
the uterine-placental interface disperses the mechanical 
torsion forces that drive IAC assembly [81]. Therefore, it 
is possible that the roles of integrins go beyond physical 

attachment and cell migration, and integrins may utilize 
other signaling cascades within the integrin adhesome to 
influence the uterine-placental environment. Two recent 
studies established that integrins mediate the ability of 
OPN to potentially affect angiogenesis and ion transport 
in uterine and placental tissues of pigs [83, 84]. Angio-
genesis is fundamental to the expansion of the placental 
vasculature during pregnancy, and both integrins and 
OPN are associated with vascular development [85–89]. 
Angiogenic blood vessels emerge from differentiated 
adult endothelial cells that line the pre-existing vascu-
lature; however, circulating endothelial progenitor cells 
(EPCs) released from bone marrow can migrate and 
incorporate into newly vascularized tissue where they 
differentiate into mature endothelium [90, 91]. When 
porcine EPCs were cultured on OPN-coated slides and 
placed into collagen gel invasion assays [92] supple-
mented with OPN, the αv-subunit was observed in IACs 
at the basal surface of the EPCs that enhanced their 
incorporation into human umbilical vein endothelial cell 
(HUVEC) sprouts. Silencing of the αv-subunit in EPCs 
using siRNA reduced EPC binding to OPN, IAC assem-
bly, and EPC incorporation into growing endothelial cell 
networks, suggesting the possibility that during placen-
tal angiogenesis EPCs expressing integrins containing 
the α-subunit bind to OPN through these αv-containing 
integrins as they incorporate into the growing vascula-
ture to potentially augment the rate and magnitude of 
angiogenesis [83].

The placenta is a low permeability barrier, and effec-
tive transport of substances depends on specific trans-
port mechanisms. Active transport requires that ions or 
nutrients be moved against an electrical and/or concen-
tration gradient. In pigs, active transport of ions occurs 
across the chorioallantois to produce an electrochemi-
cal gradient that changes throughout gestation [93, 94]. 
Ussing chambers were utilized to measure transchorio-
allantoic voltage potential as an index of ion transport 
across the chorioallantoic placenta of pigs. When intact 
recombinant OPN was added to the mucosal side of the 
tissue within the Ussing chamber, an increase in the tran-
sepithelial voltage was observed; however, when recom-
binant OPN in which the integrin binding RGD sequence 
was mutated to RAD was added into the Ussing cham-
ber, there was no increase in ion transport across the 
chorioallantois. This suggests that integrins expressed 
by the chorionic epithelium bind the RGD sequence on 
OPN to alter the magnitude of and/or cellular localiza-
tion of nutrient transporters and/or the activity of those 
transporters to increase nutrient transport across the 
chorionic and allantoic membranes to the placental vas-
culature [84]. Integrins form macromolecular complexes 
that localize ion channels to the plasma membrane and 
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they regulate potassium and calcium channels in multiple 
cell types, but ion transport across epithelia in general, 
and chorion in particular, had not been linked previously 
to integrin activation [84, 95–97].

Summary of integrin expression and function 
during gestation in sheep
During the establishment of pregnancy in sheep, con-
ceptus mononuclear trophoblast cells secrete interferon 
tau (IFNT) which acts on uterine LE/shallow GE (sGE) 
to block increases in estrogen receptor α to preclude 
oxytocin receptor expression. This prevents oxytocin 
from inducing luteolytic pulses of prostaglandin F2 alpha 
(PGF2α) and ensures maintenance of the corpus luteum 
(CL) for the production of progesterone, the hormone of 
pregnancy. The unattached sheep blastocyst is responsive 
to molecules supplied by the endometrium in the form of 
histotroph. Amongst these molecules are prostaglandins, 
glucose, fructose, and arginine and OPN that stimulate 
the mechanistic target of rapamycin (MTOR) nutrient 
sensing system (reviewed in [32, 41, 98–109]. Within this 
complex environment, the developing embryo forms the 
blastocyst by day 6 and the pluripotent blastomeres begin 
to differentiate into the ICM and trophoblast. The blasto-
cyst hatches out of the zona pellucida between days 8 and 
9 when it is about 200 µm in diameter and contains about 
300 cells. It then increases in size to 400–900 µm in diam-
eter containing about 400–900 cells, and then undergoes 
a rapid morphological transition called elongation [33]. 
The small spherical conceptus grows into a tubular form 
by day 11, followed by a phase of rapid growth and elon-
gation between days 12 and 16 to form the mature fila-
mentous conceptus of 10–22 mm on d 12, 10 cm on d 14, 
and 25 cm on d 17. During the early elongation period, 
the conceptus remains unattached to the uterine LE and 
is dependent on nutrients in the uterine lumen. The fil-
amentous conceptus remains closely associated with 
the uterine LE until it becomes immobilized within the 
uterine lumen by d 14, although the conceptus can still 
be recovered intact from the uterus by lavage with only 
superficial damage. Apposition begins near the ICM, and 
spreads towards the ends of the elongated conceptus. By 
d 16 the conceptus trophoblast is firmly attached to the 
uterine LE with significant interdigitation between the 
microvilli on uterine LE and conceptus trophoblast cells, 
as well as between placental papillae that extend down 
into the lumen of the ducts of uterine glands. The concep-
tus attaches to both the caruncular and intercaruncular 
regions of the uterus, and attachment is complete by d 22 
[99, 105]. The current consensus for the attachment cas-
cade in sheep includes downregulation of MUC1 across 
the entire uterine surface, which “unmasks” glycosyla-
tion dependent cell adhesion molecule 1 (GlyCAM-1), 

galectin 15 (LGALS15) and OPN for interaction with 
lectins and integrins. Initial attachment is likely medi-
ated by GLYCAM1 and LGALS15, and firm attachment 
is likely mediated by OPN binding integrins [11, 59, 60, 
99, 106–109].

The integrin subunits αv, α4, α5, β1, β3 and β5 are con-
stitutively present on the uterine LE and conceptus troph-
oblast during the peri-implantation period, and these 
integrin subunits potentially contribute to the assem-
blage of αvβ3, αvβ1, αvβ5, α4β1 and α5β1 integrins [59, 
60]. Although the α5-subunit is present in the cytoplasm 
and only minimal protein is evident at the apical surface 
of uterine LE, the αv-, α4-, β1-, β3- and β5-subunits are 
all present at the apical surface of uterine LE during the 
critical period of conceptus attachment for implanta-
tion. Somewhat surprisingly, the β3-subunit is limited to 
the apical surface of uterine LE during the peri-implan-
tation period, and is not expressed thereafter, suggest-
ing that the β3 integrin may play a unique role amongst 
the integrins during implantation in sheep [110, 111]. 
When translation of mRNA for trophoblast-expressed 
β3 integrin was blocked through infusion of morpholino 
antisense oligonucleotides into the uterine lumen of 
pregnant ewes on day 9, sheep conceptuses elongated and 
implanted to the uterine wall, but embryonic growth to d 
25 was inhibited, and there was decreased expression of 
OPN and nitric oxide synthase 3 (NOS3) in the develop-
ing allantois. This suggests effects of integrins containing 
the β3-subunit on development of the vasculature in the 
allantois required to transport nutrients from the uterus 
to support growth and development of the embryo [112]. 
Expression of the β5-subunit extends from the uterine LE 
into the sGE where it potentially interacts with tropho-
blast papillae, thought to serve as tethers against which 
forces necessary to generate elongation are applied, and 
serves as sites of maximal uptake of nutrients in histo-
troph [111].

It is reasonable to hypothesize that the continuous 
thin layer of immunostaining for αv, α4, β1, β3 and β5 
at the apical surface of uterine LE from d 11 through 16 
represents potential roles for the αvβ3, αvβ5 and α4β1 
integrins during conceptus elongation and the adhesion 
cascade of implantation. Affinity chromatography and 
immunoprecipitation experiments determined whether 
αv-, α4-, α5-, β1-, β3-, β5- and β6-subunits expressed 
by ovine trophoblast cells (oTr1) directly bind OPN. In 
these experiments detergent extracts of surface-bioti-
nylated oTr1 cells were incubated with OPN-Sepharose 
and the proteins that bound to OPN were eluted with 
EDTA to chelate cations and release bound integrins. The 
eluted fractions from oTr1 extracts were then subjected 
to immunoprecipitation using antibodies to the integ-
rin subunits αv, α4, α5, β1, β3, and β6, and to the αvβ3 
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and αvβ5 integrins. Successful immunoprecipitation of 
labeled oTr1 integrins occurred with antibodies to the 
αv-, α5-, and β3-subunits, as well as an antibody to the 
integrin αvβ3 heterodimer. Antibody to the αv integrin 
subunit also precipitated a β-subunit, presumed to be β3, 
as an antibody to the β3 integrin subunit precipitated an 
α-subunit at the same relative size as the bands precipi-
tated by the antibody to the αvβ3 heterodimer, indicat-
ing the αvβ3 integrin on oTr1 cells that binds OPN. The 
β1-subunit was not observed in the biotinylated oTr1 
cell extracts eluted from the OPN-Sepharose column; 
however, the fact that the β1-subunit is the only known 
binding partner for α5, and α5β1 accumulates in IACs 
at the base of oTR1 cells cultured on OPN-coated slides 
suggests that the α5β1 integrin is also an active recep-
tor for OPN in the trophoblast of sheep [113]. Further 
studies established that 1) RGD-mediated interaction 
between integrins and OPN stimulate robust oTr1 cell 
adhesion that was blocked when cations were removed 
from the culture media and in the presence of function-
blocking antibodies specific for the αvβ3 integrin; 2) the 
αv-subunit incorporates into TLN1-containing IACs 
around OPN-coated microbeads at the apical surface of 
oTr1 cells; and 3) integrins interact via the RGD sequence 
of OPN to activate MAPK and p70 ribosomal protein S6 
kinase beta-1 (P70S6K). Those results suggest that integ-
rin-mediated crosstalk between the FK506-binding pro-
tein 12-rapamycin-associated protein 1 (FRAP1)/MTOR 
pathways and the MAPK/extracellular signal regulated 
kinase (ERK) pathways [113]. Finally, the accumulation of 
the β3-subunit and phosphorylated FAK in IACs at the 
base of cultured oTr1 cells increases in response to the 
treatment of cultured cells with the combination of argi-
nine and soluble OPN [114].

The three tissue compartments of the uterus of sheep 
ie., the LE, stroma, and myometrium, exhibit tissue-
specific organization of IACs during pregnancy. In the 
first uterine compartment, it is noteworthy that by day 
40 of gestation the punctate apical surface staining of 
integrin-subunits identified in peri-implantation uterine 
LE and conceptus trophoblast [60] is replaced by large, 
scattered aggregates of IAC-associated αv-, α4-, β1-, and 
β5-subunits at the surface of the interplacentomal uter-
ine LE and trophoblast/chorion cells [110]. The IACs 
are observed only in gravid uterine horns of unilater-
ally pregnant sheep, demonstrating a requirement for 
trophoblast attachment to uterine LE, and aggregates 
increase in number and size through d 120 of pregnancy 
[110]. It is noteworthy that similar IACs containing the 
β1-subunit are observed in the placentomes of cattle, and 
epithelial cells isolated from bovine placentomes bind to 
FN1, laminin, or type IV collagen to form IACs in cul-
ture [115]. Interestingly, in sheep, no accumulation of the 

β3-subunit is observed even though the αvβ3 integrin is 
a prominent component of the uterine-placental inter-
face during the peri-implantation period of pregnancy 
in sheep [60]. In some regions of the interplacentomal 
uterine-placental interface, greater aggregation of integ-
rin subunits occurs on the uterine LE, in other regions, 
aggregates are predominant on the placental chorion, and 
in some regions both uterine LE and placental chorion 
exhibit prominent IACs. The apparent disorganized dis-
tribution of these IACs may have a structural/physiologi-
cal basis. As the uterine LE erodes during syncytialization 
of the of the uterine-placental interface [47], the sGE at 
the mouths of the uterine glands never degrades and may 
serve as a stable reserve of epithelial stem cells to replace 
the uterine LE that is lost during this period of placen-
tation. Indeed, a similar process occurs for replacement 
of the surface mucous cells of the stomach by stem cells 
that migrate from the necks of the gastric glands, and for 
the replacement of enterocytes by stem cells that migrate 
from the crypts of Lieberkuhn in the intestines. The sGE 
cells proliferate, express integrins, and express OPN, but 
OPN mRNA is not detectable at the uterine-placental 
interface of sheep and is only present in the uterine GE 
[116]. It is reasonable to propose that OPN is secreted 
from the uterine GE and binds to the integrins expressed 
by the proliferating sGE. The sGE then utilize the interac-
tions between integrins and OPN to migrate out of the 
uterine GE and repopulate the uterine LE in the interpla-
centomal regions of sheep during placentation [111]. In 
this capacity, the IACs interact with the actin cytoskele-
ton to give the chorionic cell traction as it migrates along 
the ECM. At the leading edge of the migrating cells, there 
are nascent, immature, focal complexes formed that then 
mature into IACs as the cells become stably attached to 
the ECM and more force is exerted on the focal complex 
[28, 117].

By day 60 of pregnancy, the interplacentomal uter-
ine-placental interface stabilizes into a continuous seal 
between the uterine LE and chorion except at the open-
ings of the uterine GE where the chorion does not fuse 
with the uterine LE and instead forms a pocket, referred 
to as an areola, to receive secretions from uterine GE. 
In order to maintain the integrity of these areolae there 
must be tight attachment between uterine LE and cho-
rion in non-areolar regions of the interplacentomal 
endometrial-placental interface. In these regions of the 
uterine-placental interface IACs containing the αv-, 
α4-, α5-, β1- and β5-subunits have a well-organized pat-
tern of expression in which the integrin subunit local-
izes to IACs at the apical surfaces of both uterine LE 
and chorionic epithelia, resulting in a gap between the 
apposed surfaces where adhesive ECM molecules could 
reside [111]. It is proposed that the temporal and spatial 



Page 13 of 19Johnson et al. Journal of Animal Science and Biotechnology          (2023) 14:115 	

formation of these mature IACs represents engagement 
of integrins with the ECM to stabilize adhesion between 
uterine LE and chorionic epithelium in response to the 
increasing mechanical stress being placed on this inter-
face by the ever-increasing size of the fetus and volumes 
of fetal fluids [110]. Interestingly, OPN co-localizes with 
these IACs, suggesting that OPN is acting as a bridging 
ligand between IACs to maintain contact between uter-
ine LE and chorion [111].

In the second uterine compartment, during and imme-
diately after the conceptus attaches to the uterine LE for 
implantation, the fibroblasts of the stratum-compactum 
stroma of sheep differentiate into a myofibroblast pheno-
type associated with upregulation of the cytoskeletal pro-
teins desmin, vimentin, and alpha-smooth muscle actin 
to augment the contractility of fibroblasts [118]. These 
stromal cells also express the αv- and β3-subunits, as 
well as the ECM proteins OPN, FN1, and VTN [110]. The 
αvβ3 integrin that potentially assembles within the stra-
tum compactum stroma is capable of binding VTN, FN1, 
and OPN to form IACs, and a diffuse spatial pattern of 
localization of αvβ3 integrin, VTN, FN1, and OPN within 
the stroma suggests they are organized into 3D matrix 
adhesions that developed in a mechanically stressed but a 
relatively strain-shielded environment [110].

In the third uterine compartment, the myometrium, 
the smooth muscle cells respond to forces arising dur-
ing pregnancy including increases in fetal growth/weight, 
placental fluid volumes, and blood flow to transform the 
myometrium into a tissue capable of forcefully expelling 
the fetus and placental membranes during parturition 
[119]. One of the ways that smooth muscle cells respond 
to extracellular mechanical forces is through the assem-
bly of integrin IACs that provide a scaffold through which 
cells sense and transduce responses to those forces. IACs 
develop at the intracellular boundary where transmem-
brane integrin receptors bound to ECM proteins con-
nect with the actomyosin cytoskeleton and nucleate 
cytoplasmic signaling hubs [120, 121]. Indeed, in both 
humans and rats highly ordered IACs develop between 
myometrial smooth muscle cells during late pregnancy in 
order for the uterus to develop the mechanical strength 
to expel the fetus and placenta at parturition, and these 
IACs subsequently disassemble after parturition [122–
124]. Recently it was reported that the ovine myome-
trium assembles IACs involving the association of the 
α5β1 integrin with the ECM protein FN1 and intracel-
lularly with VCL and TLN1 during the first trimester of 
pregnancy [125]. These IACs increasingly organize into 
linear strands along the long axis of the myometrial cells 
as the fetus continues to grow and allantoic and amniotic 
fluids continue to accumulate. Mechanical stretch of the 
uterine wall contributes a sustained local force by day 40 

of pregnancy that advances development of increasingly 
ordered IACs between the myometrial smooth muscle 
cells until parturition. This ordered structure is lost by 
day 1 postpartum, but the abundance of the integrin pro-
teins remains elevated for at least two weeks postpartum 
[125].

Summary of integrin expression and function 
during gestation in humans
The initial stages of development of the human concep-
tus from conception to morula occur within the oviduct, 
and it is the morula that enters the uterus 2 to 3 d after 
fertilization. The morula then quickly differentiates into 
the blastocyst consisting of a fluid-filled inner cavity con-
taining the ICM and surrounded by the trophoblast. This 
blastocyst hatches from the zona pellucida within 72 h of 
entering the uterus exposing the surface of the tropho-
blast for interaction with the uterus both physically and 
in the form of uptake of histotroph. Implantation occurs 
about a week after ovulation [40]. The earliest stages of 
trophoblast adhesion to and penetration through the 
uterine LE have never been documented in the human 
[126]; however, investigators have utilized various in vitro 
and ex vivo systems to lead the way in our understanding 
of the cell adhesion cascade at implantation in which ini-
tial weak interactions between the conceptus trophoblast 
and uterine LE is reversible in advance of a later more 
stable adhesion [10, 49]. Although upregulated by proges-
terone during the menstrual cycle, MUC1 downregulates 
locally beneath the attaching blastocyst [127, 128]. This 
is followed by tenuous interactions between the uter-
ine LE and trophoblast mediated by, but not limited to, 
mucin-associated fucosylated glycans sulpho-sialyl Lewis 
X, Lewis X, Lewis Y, H type 1, trophinin, heparin-binding 
epidermal-like growth factor (HB-EGF) and dystroglycan 
[49]. Stable adhesion of the conceptus to the uterine LE is 
then mediated through the integrins [10].

Between 1992 and 1996, Lessey and co-workers 
reported results from a series of studies that estab-
lished integrins as important features of the human 
endometrium. Initial examination found that the inte-
grin subunits αv, α1, α2, α3, α6, β3 were expressed by 
epithelia with the αv-subunit increasing during the 
secretory phase and the α1- and β3-subuits present 
only during the secretory phase of the menstrual cycle 
[9]. Further characterization of the uterine epithelial 
expression of integrin subunits provided evidence that 
the timing of maximal expression of the αv-, α4-, β1-, 
and β3-subunits and, therefore, the potential for α4β1 
and αvβ3 integrins to frame the window of implanta-
tion, that that abnormal expression of the αv- and 
β3-subunits was correlated with human infertility. Fail-
ure of progesterone to downregulate the progesterone 
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receptor in uterine epithelia was correlated with aber-
rant αv- and β3-subunit expression and infertility 
[129–132]. During this same period there were further 
reports on the expression of integrins in the human 
uterus that expanded the list of uterine integrin subu-
nits to αv, α1, α2, α3, α4, α6, β1, β3, and β5 [52–57].

Demonstrations of integrin functions in human 
implantation cannot be performed in women and are 
limited to in  vitro experiments. The Ishikawa human 
endometrial adenocarcinoma cell line [133] has been 
used extensively with human and/or rodent blastocysts 
or ligand-coated beads to examine ligand-integrin inter-
actions relevant to implantation in humans. Expression 
of the αvβ3 integrin increases at sites of attachment of 
both mouse and human blastocysts to Ishikawa cells, and 
when the αvβ3 integrin, the αv-subunit, or the β3-subunit 
are knocked down in mouse blastocysts via siRNA, the 
stability of attachment of the blastocysts to Ishikawa cells 
decreases. Further, the attachment of OPN-coated micro-
beads to Ishikawa cells is inhibited when the αvβ3 integ-
rin is knocked down in the Ishikawa cells [134]. Similarly, 
rat blastocysts do not attach to Ishikawa cells lacking the 
β3-subunit, and pre-incubation of either rat blastocysts 
or Ishikawa cells with RGD-blocking peptides signifi-
cantly reduces attachment of the blastocysts to Ishikawa 
cells [135, 136].

The expression of integrins at the uterine-placental 
interface of humans is not limited to the peri-implanta-
tion period. The integrin subunits α3, αv, β1, β3, β4, and 
β5 are present on first trimester villous placenta with the 
α3-subunit localized to endothelia, the αv-subunit local-
ized to the cytotrophoblasts, the β1-subunit localized to 
villous stromal cells, the β3-subunit localized to the apical 
surface of the syncytiotrophoblasts, the β4-subunit local-
ized to the cytotrophoblasts, and the β5-subunit present 
on both cytotrophoblasts and syncytiotrophoblasts [57]. 
Anchored villous cytotrophoblasts of first trimester float-
ing villi and placental bed biopsies immunostain for α6- 
and β4-subunits, the column cytotrophoblasts express 
α5- and β1-subunits, and α1-, α5- and β1-subunits are 
present on cytotrophoblasts clustered within the uterine 
wall. Indeed, the regulation of integrin expression may 
contribute to cytotrophoblast invasion into the decidua. 
Cytotrophoblast stem cells express the α6-subunit that 
is replaced by the α1-, α5- and β1-subunits in differen-
tiating and invasive cytotrophoblasts [137]. When func-
tion-blocking antibodies directed against the α1- and 
α5-subunits were added to cytotrophoblast cells cultured 
in Matrigel, perturbation of the α1-subunit inhibited 
cytotrophoblast invasion whereas perturbation of the 
α5-subunit increased invasion [138].

Finally, IACs assemble in the myometrium of pregnant 
women to aid in the formation of a mechanical syncytium 

required for effective labor. Myometrial expression of 
integrin subunits αv, α5, α7, and β3 increases during ges-
tation and α3-, α5-, α7- and β1-subunits colocalize with 
IAC proteins in the myometrium at term, suggesting that 
the α3β1, α5β1, and α7β1 integrins transmit mechani-
cal signals from the ECM through IACs in the pregnant 
human myometrium [124]. Similar IACs have been 
reported in the myometrium of pregnant rats and sheep 
[122, 123, 125].

Summary of integrin expression and function 
during gestation in rodents
The hatched mouse blastocyst lodges into a crypt on the 
antimesometrial side of the uterine lumen and the lumen 
closes around the blastocyst to form an implantation 
chamber [49]. The tight space formed by the implantation 
chamber restricts blastocyst movement and facilitates 
close apposition of the apical surfaces of trophoblast cells 
to uterine LE. The integrity of the implantation cham-
ber is maintained via closure of the lumen surrounding 
the chamber. The mechanisms involved in closure of the 
uterine lumen at interimplantation sites in mice are not 
completely understood, but likely involve absorption of 
fluid within the uterine lumen mediated by uterine aqua-
porins [139–141]. Uterine LE apposed to the tropho-
blast undergo cell death or entosis soon after blastocyst 
attachment and primary trophoblast giant cells interface 
directly with the uterine stroma. Uterine LE adjacent to 
but not attached to the blastocyst degenerate a few days 
later leaving the conceptus embedded in the uterine wall 
[142]. Apposition of the mouse blastocyst occurs by day 
4 of gestation when the blastocyst undergoes activation 
in response to a pulse of estrogen in order to initiate 
implantation on day 5 [143]. In mice, MUC1 is down-
regulated globally across the apical surface of the uterine 
LE in response to progesterone [144], and growth fac-
tors and other molecules secreted into the oviductal and 
uterine lumen stimulate trafficking of receptors to the 
trophoblast surface that are responsive to paracrine sig-
nals leading to juxtacrine interactions between the troph-
oblast and uterine LE culminating in integrin-mediated 
firm adhesion between these surfaces as the blastocysts 
migrate and encounter the basement membrane prior to 
invasion of the decidua [145].

Multiple integrin subunits are expressed by the mouse 
blastocyst. These include the constitutive expression of 
the αv-, α5-, α6-, β1- and β3-subunits and expression of 
the α2-, α6A- and α7- subunits in late blastocysts [55, 
57]. The trafficking of integrins to the trophoblast surface 
is regulated by paracrine factors released into the uterine 
lumen including estrogen required for blastocyst activa-
tion, and this trafficking is involved in blastocysts becom-
ing attachment competent. When mouse blastocysts 
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are cultured with human Ishikawa cells, the blastocysts 
attach to the Ishikawa cells and upregulate the αvβ3 
integrin at sites of attachment. When the αvβ3 integrin, 
the αv-subunit, or the β3-subunit are knocked down in 
mouse blastocysts via siRNA, blastocyst attachment to 
Ishikawa cells is less stable [134]. Further, preincubation 
of rat blastocysts or Ishikawa cells with RGD-blocking 
peptides reduces adhesion of blastocysts to Ishikawa 
cells, and rat blastocysts cultured with Ishikawa cells 
lacking the β3-subunit do not attach to the Ishikawa cells 
in  vitro [135, 136]. Indeed, when mouse blastocysts are 
cultured with Ishikawa cells, the β3-subunit undergoes 
calcium-dependent translocation from the cytoplasm 
to the apical membrane of the trophoblast cells, and the 
trophoblast initiates RGD-dependent adhesion to the 
Ishikawa cells [146]. An elegant series of experiments 
reported by the Armant laboratory details integrin traf-
ficking. In mouse blastocysts, the αvβ3 integrin is pre-
sent at the apical surface of trophoblast cells. Binding of 
HB-EGF to receptors on the apical surface of trophoblast 
cells initiates calcium signaling that leads to trafficking of 
the α5β1 integrin to the apical surface. Ligation of FN1 
to αvβ3 and α5β1 then promotes trafficking of the αIIbβ3 
integrin to the apical surface to strengthen FN1 binding 
to trophoblast cells [146–149]. Integrin trafficking to the 
apical surface of uterine LE is also a feature of implan-
tation in rodents. In rats the β1- and β3-subunits and 
TLN1 localize in IACs at the basal surface of cells on d 
1 of gestation, but under the influence of progesterone 
these IACs disassemble, and the β3-subunit increases 
its expression at the apical surface of the uterine LE. 
Together these events are postulated to facilitate blas-
tocyst attachment to the uterine LE and removal of the 
LE to facilitate blastocyst invasion to the decidua [150]. 
The importance of integrins to pregnancy in mice is high-
lighted by the fact that null mutations of the αv-, α5-, β1- 
or β5-subunits result in peri-implantation lethality and 
failure of chorioallantoic membrane fusion [151]. Fur-
ther, functional blockade of αv- and β3-subunits in mice 
reduces the number of implantation sites [152]. Simi-
larly, blocking of these subunits decreased the number of 
implantation sites in rabbits [153].

Finally, studies in rats have shown that expression 
of the α5-subunit mRNA and protein increases within 
the myometrium and the α5-subunit incorporates into 
IACs that assemble between adjacent smooth muscle 
cells during late pregnancy and labor [123]. Both hor-
mones of pregnancy and mechanical stretch upregulate 
expression of FN1, the α5β1 integrin, and other IAC 
constituents, including the cytoskeletal mechanosensor 
TLN1 [119, 123, 153]. The growth of myometrial IACs 
is sensitive to rigidity and strength of adhesion to the 
ECM [154, 155] and the IAC linkage to the ECM and 

the myometrial actomyosin complex provides sufficient 
force to expel the fetus at term [122]. Similar IACs are 
detectable in the myometrium of pregnant humans and 
sheep [110, 124, 125].

Conclusions
Integrins undoubtedly play significant roles during ges-
tation in eutherian mammals. The complex nature of 
integrin structure, ligand binding, and inside-out and 
outside-in signaling, and their important roles as regula-
tors of communication between cells and between cells 
and the ECM. These interactions allow integrins to be key 
mediators in many of the tissue remodeling events that 
occur during early embryonic development, implanta-
tion, formation of the placenta, and myometrial contrac-
tility. Although domestic animal models for research are 
often underappreciated [156], the vast variations among 
the placentae of different species necessitate significant 
variations in the expression and function of integrins at 
the uterine-placental interface, and this highlights the 
value of comparative studies in the field of integrins and 
placentation. Our understanding of the complex physi-
ology of integrins and their roles during pregnancy has 
been, and will likely continue to be, advanced by studies 
of pigs, sheep, humans and rodents as animal models for 
biomedical research. This field of research is an excellent 
example of how the “boat” of our understanding rises as 
laboratories focusing on different species take note of 
the advances made by one-another and build on those 
legacies.
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