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Abstract 

Background  Many phenotypes in animal breeding are derived from incomplete measures, especially if they are 
challenging or expensive to measure precisely. Examples include time-dependent traits such as reproductive status, 
or lifespan. Incomplete measures for these traits result in phenotypes that are subject to left-, interval- and right-
censoring, where phenotypes are only known to fall below an upper bound, between a lower and upper bound, 
or above a lower bound respectively. Here we compare three methods for deriving phenotypes from incomplete data 
using age at first elevation (> 1 ng/mL) in blood plasma progesterone (AGEP4), which generally coincides with onset 
of puberty, as an example trait.

Methods  We produced AGEP4 phenotypes from three blood samples collected at about 30-day intervals 
from approximately 5,000 Holstein–Friesian or Holstein–Friesian × Jersey cross-bred dairy heifers managed in 54 
seasonal-calving, pasture-based herds in New Zealand. We used these actual data to simulate 7 different visit sce-
narios, increasing the extent of censoring by disregarding data from one or two of the three visits. Three methods 
for deriving phenotypes from these data were explored: 1) ordinal categorical variables which were analysed using 
categorical threshold analysis; 2) continuous variables, with a penalty of 31 d assigned to right-censored phenotypes; 
and 3) continuous variables, sampled from within a lower and upper bound using a data augmentation approach.

Results  Credibility intervals for heritability estimations overlapped across all methods and visit scenarios, but esti-
mated heritabilities tended to be higher when left censoring was reduced. For sires with at least 5 daughters, the cor-
relations between estimated breeding values (EBVs) from our three-visit scenario and each reduced data scenario 
varied by method, ranging from 0.65 to 0.95. The estimated breed effects also varied by method, but breed differ-
ences were smaller as phenotype censoring increased.

Conclusion  Our results indicate that using some methods, phenotypes derived from one observation per offspring 
for a time-dependent trait such as AGEP4 may provide comparable sire rankings to three observations per offspring. 
This has implications for the design of large-scale phenotyping initiatives where animal breeders aim to estimate 
variance parameters and estimated breeding values (EBVs) for phenotypes that are challenging to measure or prohibi-
tively expensive.
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Background
Time-dependent traits can be logistically challenging 
and expensive to measure precisely, as animals need to 
be observed regularly over a long period of time. Some 
examples include age at puberty (AGEP), mating and 
calving dates (particularly in the context of beef cattle) 
and lifespan (which requires culling or mortality dates). 
In the case of AGEP, indicator traits may be measured 
repeatedly over a period, with some pre-determined cri-
teria to define an animal as either pubertal or non-puber-
tal at any given time. Possible measures include behavior 
monitoring to identify an estrus event, ultrasonography 
of ovaries to detect the presence or absence of a corpus 
luteum or testing for elevated blood plasma progesterone 
(BP4) concentrations that indicate the presence of a func-
tioning corpus luteum [1–3]. Measuring these indica-
tor traits often requires skilled professionals, specialized 
equipment, facilities, or laboratory resources, as well as a 
significant commitment from the herd owners who must 
make their animals available on multiple occasions while 
somewhat invasive measurements are obtained. These 
logistical and economic challenges mean that if the AGEP 
trait is to be measured at sufficient scale for genetic eval-
uations, it is preferable to establish a phenotype for each 
animal using as few observations as possible. Therefore, 
the AGEP trait provides a useful case study of a trait that 
is rarely measured precisely, and so phenotypes are often 
subject to censoring.

Past experiments which define the AGEP of individual 
heifers have measured animals at a range of intervals, 
including monthly [4], weekly [1] or daily [2, 5]. Research-
ers should optimize both the length of the observation 
window and the frequency of measures, according to the 
cost and effort associated with each additional measure. 
Optimizing measurement regimes requires assessing the 
added value of reducing left censoring (animals that are 
pubertal prior to the start of the observations), interval 
censoring (animals that become pubertal between two 
observations), and right censoring (animals that are not 
pubertal before the end of the observation window).

It is difficult to directly assess the implications of cen-
soring on the genetic analysis of a trait like AGEP, as pre-
cise phenotypes are prohibitively difficult to measure at 
a large-scale. Fortunately, high, positive correlations have 
been reported between EBVs produced using simulated 
phenotypes that were either uncensored, or subject to 
various left-, interval- or right-censoring combinations 
[6]. Those findings indicate that heritability estimates and 
EBVs can be robust to phenotype censoring, although 

this may depend on the methods used to derive AGEP 
phenotypes from censored observations.

There are several methods that can be used for deriv-
ing phenotypes from incomplete observation data which 
involve converting the incomplete observations into 
categorical or continuous variables. Researchers often 
convert censored AGEP observation data into a contin-
uous variable by defining AGEP as the age of the animal 
when it was first observed to meet the puberty criteria 
within a set observation period [1, 3, 7]. According to 
that definition, left and interval censoring are usually 
ignored, but a penalty approach is often used to han-
dle right censoring. Alternatively, a data augmentation 
method can be used, where a lower and upper bound 
are established using incomplete observation data, and 
an animal’s plausible phenotypes are sampled from a 
truncated normal distribution using a Gibbs sampling 
technique [6]. Data augmentation has been used previ-
ously to analyze simulated phenotypes subject to right-
censoring [8] and left-, interval- and right-censoring 
[6] with authors reporting only minimal differences 
between the analysis of censored and uncensored phe-
notypes. The method used to derive a phenotype from 
incomplete observations may be important, and a data 
augmentation approach has been shown to have a slight 
advantage over other common approaches, particularly 
for variance parameter estimation [9].

Our primary objective was to investigate the sensitiv-
ity of estimated variance parameters and breeding values 
(EBVs) to varying degrees of observation censoring for 
a time-dependent trait, using real-life phenotype data. 
Our second objective was to compare three methods for 
deriving phenotypes from censored observations. We 
hypothesized that EBVs and variance parameters would 
be robust to phenotype censoring, regardless of statisti-
cal method. We used AGEP4 as an example trait, but the 
results of this study may be applicable to many other phe-
notypes that are derived from incomplete observation 
data.

Methods
Animals
The Ruakura Animal Ethics Committee (Hamilton, New 
Zealand) approved this study and all manipulations (AE 
application: 14448). Data were collected from 5,010 
dairy heifers, born between July and September 2018 
and reared in 54 seasonal calving; pasture-based herds 
located across three regions (Waikato, Taranaki, Otago) 
of New Zealand. The average number of heifers from 
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each herd was 88 animals ± 45 (± standard deviation; 
SD). These 54 herds were selected based on the quality 
of the existing animal records and predominant breed, 
with a preference towards herds with mostly Holstein–
Friesian animals. The breed proportions for each animal 
were provided by DairyNZ (Hamilton, New Zealand), 
and were derived using pedigree records. The resultant 
study animals were predominantly Holstein–Friesian 
(i.e., > 90% Holstein–Friesian, n = 2,307) or admixed Hol-
stein–Friesian × Jersey crossbred (Holstein–Friesian and 
Jersey proportions sum to > 90%, but neither Holstein–
Friesian or Jersey are > 90% independently, n = 2,364), and 
a small number were predominantly Jersey (> 90% Jersey, 
n = 24). Our analysis also included 50 animals who could 
not be assigned to the Holstein–Friesian, Jersey or Hol-
stein–Friesian × Jersey breed categories (Other, n = 50). 
Animals with incomplete parentage (n = 132), incomplete 
observations data (n = 129), or issues with identification 
(n = 4) were excluded from analysis, leaving 4,745 animals 
remaining (Table 1). A total of 103 sires were represented 
by at least 5 daughters.

Sampling and measurements
Three sampling visits at approximately 30-day intervals 
were conducted for each of the 54 herds between May 
and August 2019. The timing was chosen to meet a tar-
get of the animals in each herd being, on average, 327 
days old at the second visit, when 45% were predicted 
to be post-pubertal based up on the stochastic model of 
Dennis et  al. [10]. Accordingly, animals were, on aver-
age, 299, 327, and 354 days old (± 14.5) on the first, sec-
ond and third visits, respectively. At each visit, blood 
was collected from a coccygeal vessel of animals using 
blood tubes containing lithium heparin (BD Vacutain-
ers, BD New Zealand, Auckland, New Zealand). Blood 
samples were immediately placed on ice and were cen-
trifuged (at 4  °C, 1,900 × g for 12  min) on the same day 
as collection. Plasma was separated and stored at −20 °C 
until BP4 concentration was analysed using a commercial 

radioimmune assay kit, as previously described [11]. 
An animal was classified as having elevated BP4 once 
it had one blood test result indicating a BP4 concentra-
tion > 1  ng/mL. This aligns with the criteria previously 
implemented to characterize onset of puberty in a popu-
lation of around 500 Holstein–Friesian cows [11].

Age at first blood plasma progesterone elevation 
phenotype analyses
We investigated three methods for deriving an AGEP4 
phenotype from incomplete observation data. In the 
analyses presented here, every phenotype was derived 
from incomplete observations.

Firstly, for the visit category method (CAT), we defined 
the phenotype for each animal as the consecutive num-
ber of the first visit it was observed with BP4 > 1 ng/mL 
(Table  2). Animals that were observed to have elevated 
BP4 on the first visit were assigned a score of one (left-
censored phenotypes), whereas those first observed with 
BP4 elevation on the second or third visit were assigned 
scores of two or three, respectively. Animals with 
BP4 < 1 ng/mL for the entire trial were assigned a score of 
four (right-censored phenotypes). We fitted a threshold 
model to these ordered categorical scores that assumed 
an underlying normally distributed liability variable, with 
fixed thresholds that mapped the unobserved liability to 
the visit score [12]. Sire, rather than animal, was fitted 
as a random effect, herd was fitted as a fixed effect and 
breed was fitted as a fixed covariate to estimate variance 
components. Animal models were not used to analyze 
phenotypes from this method as convergence failure of 
the Gibbs sampler is not uncommon for this kind of cat-
egorical data [13].

Secondly, we used an age on visit method (AGE-
VISIT), with the phenotype for each animal defined 
as its age at the first visit that it was observed with 
BP4 > 1 ng/mL (Table 2). This phenotype was treated as 
a continuous variable. Animals with BP4 < 1 ng/mL for 
the entire trial (right-censored records) were assigned 

Table 1  Population descriptive statistics of dairy heifers enrolled in age at first blood plasma progesterone elevation phenotype 
analysis

a Breeds are defined as: > 90% Holstein–Friesian (HF); > 90% Jersey (J); HF + J > 90% but HF < 90% and J < 90% (XB); and HF + J < 90% (OTHER)

Breeda No. of animals No. of herds Average No. of heifers No. of sires No. sires 
with > 5 
daughters

All 4,745 54 88 260 103

HF 2,307 54 43 166 66

J 24 1 24 7 2

XB 2,364 53 45 220 66

OTHER 50 19 3 35 0
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a penalized phenotype of 31 d older than their age on 
the last visit. A model fitting herd and breed as fixed 
effects and animal as a random effect was used to ana-
lyze this continuous trait [14].

Thirdly, we used a data augmentation method 
(AUG), whereby the unobserved continuous vari-
able representing actual age at first BP4 elevation was 
treated as an unknown variable whose value must fall 
between known upper and lower bounds (Table 2), and 
plausible values within these bounds were sampled 
using data augmentation [15]. The upper bound was 
the age of the animal at the visit it was first observed 
with BP4 > 1  ng/mL (that is, we knew that they had 
experienced BP4 elevation on or before this age). The 
lower bound was the age of the animal at the previous 
visit (when it had BP4 < 1  ng/mL). For example, the 
lower and upper bounds of an animal with BP4 > 1 ng/
mL on the second visit, would be its age on the first 
and second visits, respectively. The lower bounds for 
animals with BP4 > 1  ng/mL on the first visit (left-
censored phenotypes) were set to the very young 
value of 200 days of age, as we would expect all of the 
animals to be pre-pubertal, with basal BP4 levels at 
200-day-old [10]. The upper bounds for animals with 
BP4 < 1  ng/mL throughout the three visits (right-cen-
sored phenotypes) were set to the very old value of 500 
d, as we would expect all animals to be post-puber-
tal, with BP4 elevation by 500-day-old [10]. Plausible 
AGEP4 phenotypes for each animal were sampled to 
produce a Markov-chain Monte Carlo (MCMC) pos-
terior distribution for each animal’s AGEP4 based on 
simultaneous sampling of fixed herd, fixed breed, and 
random animal effects and variance parameters using 
single site Gibbs sampling [16].

Model equation
We fitted a linear model to these data to estimate vari-
ance parameters, fixed herd and breed effects, and to 
obtain EBVs. Matrix representation of the linear mixed 
model equation is:

where y is a vector of unobserved liabilities or pheno-
types (as defined for each method), b is a vector of fixed 
effects, u is a vector of breeding values (random effects). 
The vector e is a vector of residuals corresponding to 
each of the phenotypes. X is an incidence matrix relating 
each phenotype record to relevant fixed effects. All anal-
yses included herd as a fixed effect and proportion Jersey 
as a fixed covariate. The incidence matrix Z relates phe-
notypes to their corresponding EBVs, with a row for each 
phenotype and a column for each animal represented in 
u.

Visit scenarios
We produced a ‘control’ analysis for each of the three 
methods tested, where observations from all three visits 
were used. The results of these control analyses were then 
compared (within method) with results of seven alter-
nate test visit scenarios. Test visit scenarios varied in tim-
ing or frequency of the observations that were retained. 
Each test scenario had a proportion of data selectively 
excluded to alter left, right, or interval censoring. In total, 
we defined 8 scenarios (Fig. 1). The first scenario (early, 
mid, and late; EML) represented the actual experiment 
comprising of three visit observations. The second sce-
nario (early, mid or late; E/M/L) simulated only one ran-
domly assigned visit observation for each herd. The third, 
fourth and fifth scenarios simulated that all herds were 

(1)y = Xb + Zu+ e

Table 2  Example phenotypes (age in day) for animals that have elevated blood plasma progesterone (BP4) or not (Y/N) at each herd 
visit (one, two or three) 

A: an animal with elevated blood plasma progesterone at visit one; B: an animal whose BP4 became elevated between visit one and visit two; C: an animal whose BP4 
became elevated between visit two and visit three; and D: an animal whose BP4 became elevated after the third visit

CAT: The number of the visit where the animal was first observed with elevated BP4

AGEVISIT: Age (in day) at the visit the animal was first observed with elevated BP4

AUG: Lower and upper bounds of age (in day) when the animal first had elevated BP4

Example animal A B C D

Actual age at BP4 elevation (AGEP4) 270 380 340 400

Age at visit one (BP4 status visit one) 280 (Y) 350 (N) 300 (N) 330 (N)

Age at visit two (BP4 status visit two) 310 (Y) 380 (Y) 330 (N) 360 (N)

Age on visit three (BP4 status visit three) 340 (Y) 410 (Y) 360 (Y) 390 (N)

CAT​ 1 2 3 4

AGEVISIT 280 380 360 421

AUG​ 200–280 350–380 330–360 390–500
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only visited once and that visit is either E, M or L, respec-
tively. In these visit scenarios (2 to 5) all phenotypes were 
subject to either left or right censoring, and the ratio was 
varied depending to which visit was included. The sixth, 
seventh and eighth scenarios simulated two observations 
per herd: early and mid (EM); mid and late (ML); or early 
and late (EL), respectively. In these visit scenarios (6 to 
8) all phenotypes were subject to either left-, interval- or 
right-censoring. The ratio of phenotypes that were sub-
ject to left-, interval- or right-censoring varied depending 
on which visits were included.

Software and solver
We used command line bash scripts to pre-process 
observation data and produce files containing the phe-
notypes for each method and visit scenario combination. 
We performed the genetic analysis and post-processing 
using the JWAS package [17] implemented in Julia [18]. 
A MCMC technique was applied using a single site Gibbs 
sampler to obtain samples from the posterior distribu-
tions for fixed and random effects, variance parameters, 
and in the case of the AUG method, plausible pheno-
types within the known lower and upper bounds for 
each animal. The MCMC comprised 100,000 samples 
of every unknown, with the first 50,000 samples disre-
garded as a burn-in. The Julia packages CSV, StatsPlots, 

DataFrames were used to post-process the results. We 
assessed MCMC convergence by grouping post burn-in 
samples consecutively in lots of 10,000 (group one = sam-
ple 50,000 to 60,000, group two = sample 60,000 to 70,000 
etc.) and comparing the mean and distribution of sample 
groups. The models were considered to have converged 
when the 95% credibility intervals consistently over-
lapped across groups.

We produced 95% credibility intervals that were thresh-
olds for the 2.5% (lower bound) and 97.5% (upper bound) 
percentile of all values samples within the MCMC. That 
is, 95% of the plausible values fell within the credibility 
intervals presented.

Criteria for comparison
We used the stability of estimated variance parameters, 
breeding values (EBVs) and fixed effect solutions across 
varying degrees of phenotype censoring to assess the 
sensitivity of these parameters to increased phenotype 
censoring. That is, if a given parameter was impervious 
to increased phenotype censoring, we would expect no 
change in estimated variance parameters, breeding values 
(EBVs) and fixed effect solutions as phenotype censoring 
was increased. To assess stability of estimated variance 
parameters we compared the posterior mean and 90CRI 
of heritability estimates. Similarly, we also compared the 

Fig. 1  Eight scenarios varying the timing and number of herd visit observations to collect blood progesterone concentrations for measuring 
age at puberty (AGEP). The first scenario (early, mid, and late; EML) represented the actual experiment comprising of three visit observations. The 
second scenario (early, mid or late; E/M/L) simulated only one randomly assigned visit observation for each herd. The third, fourth and fifth scenarios 
simulate that all herds are only visited once E, M or L, respectively. The sixth, seventh and eighth scenarios simulate two observations per herd: early 
and mid (EM); mid and late (ML); or early and late (EL), respectively
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posterior mean and 90CRI of fixed breed covariate solu-
tions. To assess the stability of EBVs and fixed herd effect 
solutions we calculated the Pearson correlation coef-
ficient between EBVs produced using our control sce-
nario (early, mid and late visits included) and the EBVs 
produced using each test scenario. A higher correlation 
demonstrated greater stability.

Results
EBV correlations between visit scenarios
Correlations between sire EBVs (sires with > 5 daughters, 
n = 103) from the control scenario (EML) and scenar-
ios E/M/L, E, M, L, EM, ML, and EL were positive and 
mostly high (CAT​ r = 0.67 to 0.93, AGEVISIT r = 0.65 
to 0.95, AUG r = 0.75 to 0.95) (Table  3). Correlations 
decreased as phenotype censoring increased. The sire 
EBVs produced using the E/M/L scenario (which had just 
one randomly timed visit per herd) exhibited the lowest 
correlation with sire EBVs produced using the control 
scenario.

Among the methods, the AUG method generally had 
the highest correlations between the control scenario and 
the other scenarios. For scenarios E, M and L when there 
was a single visit to each herd, correlations ranged from 
r = 0.74 to 0.83 for the CAT method, r = 0.69 to 0.75 for 
the AGEVISIT method, and r = 0.83 to 0.87 for the AUG 
method. In contrast, for scenarios EM, ML and EL, when 
there were two visits to each herd, there were little differ-
ences across methods between the correlations with the 
control EML scenario (r = 0.90 to 0.95).

Breed effect
We estimated the breed effect for each analysis (Table 4) 
as the difference in AGEP4 between Jersey and Hol-
stein–Friesian animals. For the CAT and AUG methods, 
the breed difference was consistently negative (CAT on 
the one to four categorical scale: −1.67 to −0.84, AUG: 
−56 to −25 d); whereas for the AGEVISIT method, the 
credibility interval for breed difference spanned zero 
for the four scenarios based upon one herd visit (AGE-
VISIT: −29 to 1 d). For all methods, the size of the breed 
difference tended to decrease as phenotype censoring 
increased.

Herd effects
We also estimated herd effects for each analysis (Table 5) 
based upon the expected phenotype of an average merit 
animal in that herd, where other fixed effects (in this 
case, proportion Jersey) were zero. Herd effect (n = 54) 
correlations between the control EML scenario and visit 
scenarios (E/M/L, E, M, L, EM, ML and EL) were positive 
and generally high across methods (CAT r = 0.45 to 0.99, 
AGEVISIT r = 0.15 to 0.98, AUG r = 0.87 to 0.98). For 
all three methods, herd effect correlations decreased as 
phenotype censoring increased. The correlations of herd 
effect solutions between the control scenario and sce-
narios E, M and L, when only one visit was included per 

Table 3  Correlations between estimated breeding values (EBVs) 
from scenario one relative to those from scenarios two to eight 
for the three different methods used to derive age at first blood 
plasma progesterone elevation (AGEP4) phenotypes

CAT: The number of the visit where the animal was first observed to have 
elevated BP4; AGEVISIT: Age in day at the visit the animal was first observed 
to have elevated BP4; and AUG: The continuous variable AGEP4 sampled from 
between the known lower and upper bounds. Correlations include within 
breed EBVs for sires that had > 5 daughters with an AGEP4 phenotype (n = 103). 
Scenarios are described in Fig. 1, and analysis methods are described in Table 2

Scenario Correlations between EBVs 
relative to scenario one 
(EML)

CAT​ AGEVISIT AUG​

1 Early, mid and late visit (EML) 1.00 1.00 1.00

2 Early, mid or late visit (E/M/L) 0.67 0.65 0.75

3 Early visit only (E) 0.83 0.69 0.87

4 Mid visit only (M) 0.76 0.74 0.83

5 Late visit only (L) 0.74 0.75 0.83

6 Early and mid visit (EM) 0.94 0.95 0.95

7 Mid and late visit (ML) 0.90 0.95 0.94

8 Early and late visit (EL) 0.93 0.94 0.95

Table 4  Breed (Jersey relative to Holstein–Friesian) effect 
solutions and 95% credibility intervals from scenarios one to 
eight, for the three different methods used to analyze age at first 
blood plasma progesterone elevation (AGEP4) phenotypes

CAT: the number of the visit where the animal was first observed to have 
elevated BP4; AGEVISIT: age in day at the visit the animal was first observed 
to have elevated BP4; and AUG: the continuous variable AGEP4 sampled from 
between the known lower and upper bounds. Scenarios are described in Fig. 1, 
and analysis methods are described in Table 2

Scenario Breed (Jersey) effect solution

CAT​ AGEVISIT AUG​

1 Early, mid and late visit 
(EML)

−1.62 
(−1.26,−1.99)

−29 
(−15,−43)

−56 
(−34,−79)

2 Early, mid or late visit 
(E/M/L)

−1.31 
(−0.87,−1.75)

0 (7,−7) −40 
(−18,−62)

3 Early visit only (E) −1.58 
(−1.09,−2.06)

−2 (5,−10) −47 
(−24,−72)

4 Mid visit only (M) −1.47 
(−1.01,−1.92)

−4 (3,−11) −45 
(−23,−67)

5 Late visit only (L) −0.84 
(−0.44,−1.26)

1 (8,−7) −25 
(−5,−44)

6 Early and mid visit (EM) −1.67 
(−1.26,−2.06)

−17 
(−7,−27)

−54 
(−34,−74)

7 Mid and late visit (ML) −1.46 
(−1.07,−1.85)

−16 
(−6,−26)

−45 
(−26,−64)

8 Early and late visit (EL) −1.45 
(−1.07,−1.83)

−24 
(−11,−37)

−54 
(−28,−78)
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herd, were highest for the AUG method (CAT r = 0.45 to 
0.93, AGEVISIT r = 0.15 to 0.80, AUG r = 0.87 to 0.95). 
The correlations of herd effect solutions between the 
control scenario and scenario E/M/L (which had just 
one randomly timed visit per herd) were lowest for the 
AGEVISIT method (r = 0.15), and highest for the AUG 
method (r = 0.87). For scenarios EM, ML and EL, when 
two visits were included, the correlations of herd effect 
solutions from the control scenario were generally very 
high (CAT r = 0.51 to 0.99, AGEVISIT r = 0.96 to 0.98, 
AUG r = 0.97 to 0.99).

Heritability
The credibility intervals for heritabilities overlapped by 
scenario (rows) and methods (columns), as presented 
in Table  6. Nevertheless, the CAT method tended to 
produce the highest heritabilities across all scenarios, 
whereas the AGEVISIT method produced the lowest her-
itabilities, with intermediate heritabilities resulting from 
the AUG method. Furthermore, heritabilities tended to 
be higher when scenarios included the ‘early’ observation 
(i.e., EML, E, EM, or EL scenarios).

Discussion
Sensitivity of sire EBV rankings to increased censoring 
depended on analysis method
In this study, we quantified the extent of sire re-ranking 
based on their AGEP4 EBVs across scenarios with dif-
ferent phenotype censoring using a Pearson correlation 
coefficient (Table 3). We determined that the sensitivity 
of sire re-ranking to increased censoring varied across 
the three analysis methods investigated. When there was 
large re-ranking of sires between scenarios, it follows that 
sire selection and thus genetic progress [19] will depend 
on the timing and frequency of observations. We deter-
mined that of the three analysis methods explored, the 
AUG method provided the most robust EBVs across the 
eight scenarios tested.

Sire EBV rankings were robust (r  ≥ 0.90) for all meth-
ods between our control scenario (EML) and scenar-
ios with two observations included (i.e., EM, ML, and 
EL). These high correlations indicate that sire selec-
tions would be similar if offspring had two or three 
observations, and, in general, those two observations 
can be any combination of the early, mid-point or late 
herd visits. Our results indicate that for the purpose of 

Table 5  Correlations between herd (n = 54) effect solutions from 
scenario one relative to those from scenarios two to eight for the 
three different methods for analysing age at first blood plasma 
progesterone elevation (AGEP4) phenotypes

CAT: the number of the visit where the animal was first observed to have 
elevated BP4; AGEVISIT: age in day at the visit the animal was first observed 
to have elevated BP4; and AUG: the continuous variable AGEP4 sampled from 
between the known lower and upper bounds. Scenarios are described in Fig. 1, 
and analysis methods are described in Table 2

Scenario Herd effect correlations 
relative to scenario one 
(EML)

CAT​ AGEVISIT AUG​

1 Early, mid and late visit (EML) 1.00 1.00 1.00

2 Early, mid or late visit (E/M/L) 0.47 0.15 0.87

3 Early visit only (E) 0.45 0.76 0.87

4 Mid visit only (M) 0.53 0.80 0.95

5 Late visit only (L) 0.93 0.76 0.93

6 Early and mid visit (EM) 0.51 0.97 0.98

7 Mid and late visit (ML) 0.97 0.96 0.97

8 Early and late visit (EL) 0.99 0.98 0.99

Table 6  Heritabilities and 95% credibility intervals from scenarios one to eight for the three different methods used to analyze age at 
first blood plasma progesterone elevation (AGEP4) phenotypes

CAT: the number of the visit where the animal was first observed to have elevated BP4; AGEVISIT: age in day at the visit the animal was first observed to have elevated 
BP4; and AUG: the continuous variable AGEP4 sampled from between the known lower and upper bounds. Scenarios are described in Fig. 1, and analysis methods are 
described in Table 2

Scenario Heritability

CAT​ AGEVISIT AUG​

1 Early, mid and late visit (EML) 0.39 (0.24,0.58) 0.23 (0.16,0.32) 0.32 (0.21,0.46)

2 Early, mid or late visit (E/M/L) 0.23 (0.13,0.38) 0.19 (0.13,0.28) 0.21 (0.11,0.35)

3 Early visit only (E) 0.36 (0.20,0.58) 0.29 (0.20,0.40) 0.31 (0.14,0.54)

4 Mid visit only (M) 0.23 (0.12,0.39) 0.19 (0.13,0.27) 0.19 (0.10,0.33)

5 Late visit only (L) 0.20 (0.10,0.35) 0.16 (0.10,0.22) 0.14 (0.05,0.26)

6 Early and mid visit (EM) 0.40 (0.24,0.62) 0.22 (0.15,0.30) 0.30 (0.19,0.45)

7 Mid and late visit (ML) 0.26 (0.15,0.42) 0.17 (0.11,0.23) 0.23 (0.11,0.36)

8 Early and late visit (EL) 0.33 (0.19,0.50) 0.19 (0.12,0.26) 0.28 (0.17,0.41)
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determining sire rankings for genetic selection, there 
may be limited marginal gain in a third observation per 
animal. This finding could be useful for large-scale phe-
notype collection for routine genetic evaluations or for 
future trial design, as AGEP and other time-dependent 
binary traits can be logistically and economically diffi-
cult to measure.

The marginal gain of a second visit appears to be higher 
than that of a third visit, as greater re-ranking was appar-
ent across all methods when scenarios included only 
one visit (i.e., E/M/L, E, M, or L). However, the extent of 
EBV re-ranking depended on the analysis method; EBVs 
produced by the AUG method were the most robust to 
this degree of phenotype censoring based upon a single 
observation. Furthermore, the timing of the single visit 
affected sire re-ranking. For the CAT and AUG methods, 
scenario E based on a single ‘early’ visit per herd resulted 
in the least re-ranking relative to our control scenario. 
In general, the AGEVISIT method resulted in the most 
re-ranking when only a single visit was included, but the 
timing of a single visit did not appear to be as important. 
These results suggest that EBVs calculated using the AUG 
method are robust using a single observation per ani-
mal, potentially reducing the data measurement effort 
required and improving the scalability of phenotype 
collection. For example, a single observation per animal 
could enable a larger number of animals to be measured, 
which would improve the accuracy of sire EBVs, increas-
ing the number of selection candidates, and thus the 
selection intensity for the trait.

Furthermore, the E/M/L scenario represents a likely 
practical measurement regime should a phenotype like 
AGEP4 be measured at scale. Seasonal calving dates tend 
to be aligned within regions of New Zealand and other 
countries that have pasture-based dairy systems, which 
means that the average ages of birth year groups are 
similar across herds. Hence, it may be infeasible to col-
lect heifer BP4 status across large numbers of herds at a 
specific average age. Instead, it would be more reason-
able to recommend that animals are measured on a sin-
gle visit within a defined age window. We were not able 
to fully test this scenario using our current data, as our 
visits were scheduled to occur at only three average herd 
ages (297, 327  and 357 d). However, if this phenotype 
was measured at scale, we would likely obtain BP4 status 
for a sire’s offspring across a more diverse range of ages, 
which may minimize sensitivity to censoring. Neverthe-
less, it will be important to fully quantify the implications 
of random visit times, as it is also possible that under this 
constraint, a single observation does not provide ade-
quate data to inform sire ranking. That is, two or more 
observations may be required if the timing of observa-
tions cannot be aligned across herds.

Estimated breed effects depended on analysis method 
and phenotype censoring
The breed effects, which represent the estimated dif-
ference between breeds, depended on analysis method 
and scenario for phenotyping. The negative Jersey breed 
effect solutions when all three observation visits were 
included (scenario EML) indicated that Jersey animals 
experienced BP4 elevation before Holstein–Friesian ani-
mals, although the size of this difference varied by analy-
sis method. Furthermore, within each analysis method, 
the estimated breed difference was smallest when the 
scenario did not include the ‘early’ visit (that is, when left 
censoring was increased). It has been previously reported 
that Jersey animals attained puberty 70 d earlier than 
Holstein–Friesian animals in a New Zealand system [1]. 
A breed difference of 70 d falls within the upper end of 
our credibility intervals under the CAT and AUG meth-
ods when the scenarios included the ‘early’ observation; 
however, using the AGEVISIT method we did not esti-
mate a plausible breed difference of up to 70 d under any 
scenario. Our results viewed alongside previous research 
indicate that the breed difference for AGEP4 is well esti-
mated for the CAT and AUG methods when three obser-
vations are included but may become underestimated as 
the phenotype becomes more censored, especially left 
censored. Conversely, the breed difference under the 
AGEVISIT method may be consistently underestimated 
across all phenotyping scenarios.

It is important that differences between breeds are well 
estimated. Firstly, in a multi-breed analysis, the accuracy 
of breed effects will influence the dispersion parameters, 
and thus affect estimates of heritability. When breed is 
fitted as a fixed effect in a genetic analysis, the heritabil-
ity should represent the proportion of phenotypic vari-
ance that is due to within breed additive genetic variance 
(that is, variance that cannot be attributed to residuals 
and relevant fixed effects, including breed). If the breed 
effect is poorly estimated, then variance due to breed can 
be incorrectly attributed to additive genetic variance, 
thus inflating the estimated heritability. Secondly, the 
inaccuracy of breed differences will systematically effect 
EBV rankings when animals are compared across breed. 
In dairy sectors with mixed-breed populations, such as 
in New Zealand, farmers are often provided with ‘across 
breed’ EBVs (that is, the fixed breed effects are added 
to the within-breed EBV). This allows farmers to select 
the highest-ranking animals on an index, or for a given 
trait, irrespective of breed composition. If the breed dif-
ference for a trait is not accurate, this will result in sys-
tematic under- or over-estimation of a certain breed, 
leading to suboptimal genetic selection decisions. Third, 
the estimated breed differences may be useful in optimiz-
ing future phenotype collection. For example, our results 
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indicate that the model solutions are most sensitive to 
left censoring of the phenotype. The estimated breed dif-
ference can provide useful insight for reducing left cen-
soring when measuring this trait across breed.

The Jersey breed was not well represented by pedigree 
Jerseys, as in this study as there were only 24 animals 
that were > 90% Jersey, and they were all in the same con-
temporary group. However, around half of the animals 
included in this study were admixed crosses between the 
Holstein–Friesian and Jersey breeds, and these cross-
bred animals were present in 53 of the 54 herds. The large 
number of cross-bred animals provided a reasonable 
basis for estimating a breed difference between Holstein-
Friesians and Jerseys, as around half of the phenotypes 
included in the analysis will contribute to the solution 
for this fixed covariate. As indicated, we were not able to 
separate the effects of heterosis and breed, as heterosis 
coefficients and breed fractions were correlated in this 
population. It is possible that if we were able to repeat 
this study in a population with greater representation of 
100% Jersey animals, we would find that the estimation of 
breed differences behaved differently across method and 
across scenarios. Hence, further investigations including 
data from this breed are required.

Sensitivity of herd effects to increased censoring 
depended on analysis method
We quantified the extent that herds re-rank based on 
mean AGEP4 across the phenotype censoring scenarios 
using a Pearson correlation coefficient. Our results indi-
cated a large degree of re-ranking of herds between our 
control scenario and the test scenarios with increased 
censoring for the CAT and AGEVISIT method. In con-
trast, the herd rankings under the AUG method were 
remarkably consistent across various visit scenarios. Sim-
ilar to the estimation of breed differences, the accuracy of 
the herd effects are important for the accurate estimation 
of dispersion parameters and EBVs. The stability of herd 
effects between scenarios for the AUG method will con-
tribute to the stability of EBVs between scenarios.

Heritabilities were robust to method and phenotype 
censoring
Estimated heritabilities for AGEP4 varied little between 
different methods or scenarios. We did, however, observe 
a tendency for higher heritabilities when the ‘early’ visit 
was included in the analysis. This aligns with indications 
from this research that breed and herd effects appear 
better estimated under scenarios that minimize left cen-
soring. Including the early visit in the analysis differenti-
ates animals with left-censored phenotypes and provides 
separation between their phenotypes and those of the 
remaining animals in the study. It would seem that this is 

an important distinction to make when estimating vari-
ance parameters, although the importance of including 
the early visit may be relative to the extent of left-censor-
ing in the dataset. Across the methods and regimes ana-
lysed, the heritability for AGEP4 was estimated between 
0.05 and 0.60, with a mean of around 0.25. This spread in 
heritabilities is comparable to those reported in current 
literature, which range from 0.10 to 0.56 [7, 20].

General limitations
Using our method of AGEP4 phenotyping based on one 
to three herd visits to collect BP4, there will be some ani-
mals with false negatives for BP4 status. Concentrations 
of BP4 are cyclic in post-pubertal heifers and are not ele-
vated for about one week of the three-week estrous cycle. 
Hence, these periods of naturally low BP4 in post-puber-
tal animals will have produced false negatives in our 
data (i.e., a pubertal animal will present with basal BP4 
roughly 30% of the time). The four-week interval between 
herd visits means that natural BP4 depression in post-
pubertal animals can only create a maximum of one false 
negative record per animal. False negatives will mean that 
some animals will be penalized incorrectly. False nega-
tives may increase the residual variance associated with 
our AGEP4 phenotypes, and therefore reduce the esti-
mated heritability of our phenotype. We would expect 
false negatives to occur at random across our population, 
without bias towards the daughters of any particular sire. 
Therefore, we would not expect false negatives to have 
implications for sire rankings. This theory is supported 
by the findings [21] where the authors tested the impli-
cations of phenotype censoring using AGEP4 phenotypes 
measured in a small population of approximately 500 
cows measured weekly. In that study, AGEP phenotypes 
were compared under two levels of censoring. The least 
censored version of the phenotype involved an extended 
period of weekly blood testing, which would essentially 
eliminate the occurrence of false negatives in the phe-
notypes. The second, more censored version of the phe-
notype mirrored the phenotyping strategy that we have 
used in the present study. Their results indicated that 
phenotype censoring in this manner had minimal impli-
cations on animal EBV rankings.

The ‘control’ scenario presented here used only 
monthly measures and therefore was already censored, 
and this limits our ability to make inference about the 
implications of censoring. Our results indicate that the 
marginal gain of a third BP4 observation is not likely to 
justify the cost or effort associated with this measure-
ment. The least censored version of this phenotype would 
be daily observations for each animal over the complete 
window where it was biologically possible for them to 
attain puberty; however, we were not able to test the 
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implications of moving from no censoring (daily obser-
vations) to three observations per daughter. That said, 
Stephen et al. [6] recently investigated the implications of 
phenotype censoring using simulated AGEP phenotypes. 
In their study, the censoring scenarios mirrored most of 
those included in the present study (all except the E/M/L 
scenario), but the control scenario used uncensored 
daily phenotypes. The authors used a data augmentation 
approach and reported only minimal differences between 
either heritability estimates or EBVs across censoring 
scenarios.

Conclusions
It may be feasible for animal breeders with a given budget 
to increase the number of animals measured in a progeny 
test by reducing the number of observations per animal 
when collecting performance data for time-dependent 
traits such as AGEP. The three main findings of our study 
are, first, using the three analysis methods investigated, 
two observations per offspring may provide comparable 
sire rankings to three observations per offspring. Second, 
using a data augmentation approach, one observation per 
offspring may provide comparable sire rankings to three 
observations per offspring. Third, using any of the three 
methods investigated, one or two observations per off-
spring may provide comparable estimated heritabilities. 
However, it is worth noting that breed differences tended 
to decrease as phenotype censoring increased, and so 
care should be taken when applying these findings to an 
across-breed evaluation system.

Our findings have implications for the design of large-
scale phenotyping initiatives as reducing the number of 
observations per animal for time-dependent traits could 
lead to a larger number of animals phenotyped, poten-
tially improving accuracy and intensity of selection.
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