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Abstract 

Valine is an essential amino acid and a type of branched-chain amino acid. Due to the involvement of branched-
chain amino acids in various metabolic pathways, there has been a surge of interests in valine nutrition and its role 
in animal physiology. In pigs, the interactions between valine and other branched-chain amino acids or aromatic 
amino acids are complex. In this review, we delve into the interaction mechanism, metabolic pathways, and biological 
functions of valine. Appropriate valine supplementation not only enhances growth and reproductive performances, 
but also modulates gut microbiota and immune functions. Based on past observations and interpretations, we 
provide recommended feed levels of valine for weaned piglets, growing pigs, gilts, lactating sows, barrows and entire 
males. The summarized valine nutrient requirements for pigs at different stages offer valuable insights for future 
research and practical applications in animal husbandry.
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Introduction
The basic function of amino acids is to synthesize pro-
teins in bodies [1]. They can also play the non-pro-
teinogenic functions as bioactive molecules in nutrition 
metabolism, stress response, and tissue development [1, 
2]. Many amino acids have showed versatile biochemi-
cal properties and functions for swine due to variations 
in their side chains [3, 4]. Valine, leucine and isoleucine 
belong to branched-chain amino acids (BCAAs) because 
their functional R groups are all branched [5]. It has been 

reported that the addition of BCAAs in piglet diet has a 
positive effect on muscle mass and protein synthesis [6]. 
Valine cannot be de novo synthesized by animals, and it 
must to be obtained through protein degradation from 
diet, such as grains and fish meal [7–9]. Unlike D-valine, 
which forms bacterial cell walls, L-valine is more widely 
used to synthesize proteins in the body [10–12]. In the 
swine industry, L-valine is commonly used as a white 
crystalline or crystalline powder [13, 14].

Ammonia, biogenic amines, and indolic compounds 
belong to protein fermentation metabolites, which 
increase colon permeability and damage intestinal health 
[15]. For farm animals, low protein (LP) diet is a diet 
pattern in which the crude protein (CP) level is reduced 
by 2% to 4% without affecting the growth performance, 
and increases the appropriate dosages of limiting amino 
acids [16, 17]. The LP diet improves nitrogen utilization 
rate and limits environmental pollution caused by nitro-
gen excretion in intensive animal livestock production 
[18–20]. Sometimes, the reduction of dietary CP may 
lead to the increase in endogenous synthesis of non-
essential amino acids for the nitrogen requirements [21]. 
Lysine, threonine, methionine, and tryptophan, as the 
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four limiting amino acids, have been widely added in the 
LP diet to balance for an ideal protein ratio and meet the 
requirements for essential amino acids and total nitrogen 
in growing-finishing pigs [21]. In lactating sows, the sec-
ond limiting amino acid varies with the change of tissue 
mobilization, while lysine is consistently regarded as the 
first limiting amino acid [22].

Similar to the above limiting amino acids, in the swine 
industry, supplementation with crystalline valine also 
maintains growth performance by supplying with a more 
balanced amino acid profile in the corn-soybean diet 
with low CP [14, 23]. As has been neglected for growing-
finishing pigs in the past, valine is regarded as the fifth 
limiting amino acid [21]. When lactating pigs do not 
mobilize body tissue, valine acts as the second limiting 
amino acid [22]. In pig nutrition, the interactions have 
been observed between valine with isoleucine and leu-
cine, as well as between valine with aromatic amino acids 
[14, 24]. According to its metabolic pathways, this review 
emphasized the roles of valine to regulate energy supply, 

structure of gut microbiota, immune functions, and 
reproductive performance in swine. The recommended 
nutrient requirements of valine at pig different growth 
stages were summarized in Table 1 [25–27]. The compre-
hensive analysis of the valine supplementation is still an 
evolving aspect of study in swine, and targeted applica-
tion of valine to support animal demands should be val-
ued in subsequent research.

Metabolic pathways of valine
The synthesis of valine occurs in microorganisms and 
plants, but not in animals [5]. Valine biosynthetic path-
way consists of four steps (Fig. 1B). Pyruvate is the start-
ing point of valine biosynthetic pathway, which arises 
from the glycolytic pathway. In the first step, pyruvate 
is converted to α-acetolactate by acetohydroxy acid syn-
thase. In the second step, acetohydroxy acid isomer-
oreductase catalyzes the conversion of α-acetolactate 
to α,β-dihydroxyisovalerate, via auto-displacement 
of methyl groups. Dihydroxy-acid dehydratase is the 

Table 1  Some recommended standard content of SID valine/lysine in diets for swine

NRC National research council, SID Standardized ileal digestibility

SID valine:lysine Category and body weight References

64% Piglets NRC 2012 [25]

70% Piglets British Society of Animal Science 2003 [26]

86.3% Weaned piglets (5 to 10 kg) Mavromichalis et al. [27]

63.3% Growing pigs (5 to 7 kg) NRC 2012 [25]

63.7% Growing pigs (7 to 11 kg) NRC 2012 [25]

67.4% Growing pigs (10 to 20 kg) Mavromichalis et al. [27]

63.4% Growing pigs (11 to 25 kg) NRC 2012 [25]

70.3% Growing pigs (15 to 30 kg) British Society of Animal Science 2003 [26]

65.3% Growing pigs (25 to 50 kg) NRC 2012 [25]

70.2% Growing pigs (30 to 60 kg) British Society of Animal Science 2003 [26]

64.7% Growing pigs (50 to 75 kg) NRC 2012 [25]

70.6% Growing pigs (60 to 90 kg) British Society of Animal Science 2003 [26]

65.8% Growing pigs (75 to 100 kg) NRC 2012 [25]

70.4% Growing pigs (90 to 120 kg) British Society of Animal Science 2003 [26]

67.2% Growing pigs (100 to 135 kg) NRC 2012 [25]

65.5% Gilts (50 to 75 kg) NRC 2012 [25]

66.2% Gilts (75 to 100 kg) NRC 2012 [25]

67.2% Gilts (100 to 135 kg) NRC 2012 [25]

73.5% Sows and gilts British Society of Animal Science 2003 [26]

76.6% Lactating sows British Society of Animal Science 2003 [26]

76.2% Lactating gilts British Society of Animal Science 2003 [26]

65.4% Barrows (50 to 75 kg) NRC 2012 [25]

66.7% Barrows (75 to 100 kg) NRC 2012 [25]

67.2% Barrows (100 to 135 kg) NRC 2012 [25]

65.9% Entire males (50 to 75 kg) NRC 2012 [25]

65.9% Entire males (75 to 100 kg) NRC 2012 [25]

65.8% Entire males (100 to 135 kg) NRC 2012 [25]
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enzyme for the third step in which α-ketoisovalerate is 
formed from α,β-dihydroxyisovalerate. It is worth not-
ing that this enzyme is inhibited by valine [28]. In the last 
step, α-ketoisovalerate is catalyzed by branched-chain 
amino acid transaminase (BCAT) to synthesize valine. 
In industrial production, valine has been usually manu-
factured by the industrial mutant strains of Corynebac-
terium glutamicum and Escherichia coli (E. coli) [29]. 
Nowadays, some mutants or engineered strains may 
serve as specific probiotics for a production of valine or 
other amino acids to meet swine demand [30–33].

Unlike the synthetic pathway, valine could be catabo-
lized through a similar process in all life-forms (Fig. 1C) 
[5]. Through a series of reactions, valine is eventually 
converted into succinyl-CoA, which enters the tricar-
boxylic acid cycle [34]. Moreover, it is mentionable that, 
as a precursor for the synthesis of branched chain fatty 
acids, valine is converted into iso-14:0 and iso-16:0, 
which are the main components of membrane lipids of 
gut bacteria [35, 36]. Likewise, leucine and isoleucine are 
also converted into iso-15:0, iso-17:0, and anteiso-15:0, 
anteiso-17:0, respectively [36].

Interaction of valine with amino acids
Valine with isoleucine and leucine
Valine, leucine, and isoleucine belong to BCAAs and use 
common transport systems for amino acid absorption 
due to the similar structure of their side chains [5, 37]. In 
the metabolic pathway, BCAAs share enzymes for catab-
olizing the first two steps, the BCAT and branched chain 
keto-acid dehydrogenase [38]. Because the corn and corn 
by-products, such as distillers dried grains with solubles, 
have relatively high leucine concentrations, it is often 
possible that leucine is in excess in corn-based diets and 
practical high protein diets [39–42]. High leucine could 
stimulate the activity of metabolic enzymes and enhance 
the catabolism of valine thus reduce the serum concen-
tration of valine (Fig. 2A) [43]. Likewise, because of the 
common transport systems, leucine and isoleucine could 
compete for the amino acid transporters and inhibit the 
absorption of valine [44] (Fig. 2B).

The antagonistic interactions among BCAAs in dietary 
have been observed in some species, like chicks, tur-
key poults, pigs, kittens, rats, and humans [45–48]. For 

six-week-old female pigs fed leucine (65% greater than 
the NRC 1998 requirement estimate), compared to sup-
plementation with 0.18% valine, the effect of feeding the 
deficient valine diet (0) on plasma concentration of valine 
and feed intake after ingestion were examined [49]. The 
results showed that the deficient valine diet resulted in 
a 14% reduction in feed intake occurred within 1 h and 
reduced plasma concentration of valine, which might 
indicate the BCAA unbalance or deficiency [50]. In neo-
natal piglets, Elango et al.  [51] reported that the BCAA 
antagonism could be relieved when the ratio was 1.2:1.8:1 
(valine/leucine/isoleucine) in diet, and the mean total 
requirement of BCAA in parenteral was 56% of in enteral 
through breakpoint analysis.

On the one hand, in the high leucine diet of pig-
lets, adding extra valine could largely counteract the 
feed intake reduction and growth performance decline 
caused by excess leucine, most likely because the valine 
addition diminishes the leucine uptake through the 
blood–brain barrier [52–54]. Nevertheless, valine sup-
ply could not correct the negative effect of excess leucine 
on the expression of b0,+, which is the most important 
transporter for cationic amino acid expressed in epithe-
lial cells [55]. On the other hand, for carcass traits and 
meat quality in finishing pigs, valine and isoleucine had 
significant interactions in backfat thickness, water dis-
tribution forms and myofibrillar protein solubility [56]. 
Richert et al. [57] did not observe look at the interactions 
between isoleucine and valine in sows. Therefore, in 
terms of nutritional requirements, more experiments are 
needed to demonstrate the interaction between valine 
and isoleucine. Interestingly, valine oversupply is less 
unlikely to induce the BCAA antagonism compared with 
leucine and isoleucine, probably because valine is less 
important in BCAA antagonism, and excessive valine 
seem to have a lesser effect on increasing the catabolism 
of the other BCAA [9, 14, 58]. Burnham et al. [59] found 
that excess leucine reduced food intake in broilers, while 
excess valine had no effects.

Valine with aromatic amino acids
BCAAs and aromatic amino acids are large neutral amino 
acids, which share the L-type amino acid transporters, to 
compete for pass the blood–brain barrier (Fig.  2C) [60, 

Fig. 1  Structure and pathways. A Structure of BCAAs, including L-leucine, L-valine and L-isoleucine. B An overview of biosynthetic pathway 
of L-valine in bacteria, such as Corynebacterium glutamicum and Escherichia coli. C A schematic diagram for the complete metabolism of L-valine 
in animals. L-valine is catabolized to succinyl-CoA and subsequently enter the TCA cycle. The numbers correspond to the appropriate enzymes 
for main reactions. 1. Acetohydroxy acid synthase; 2. Acetohydroxy acid isomeroreductase; 3. Dihydroxy-acid dehydratase; 4. Branched chain 
amino acid transaminase; 5. Branched chain keto-acid dehydrogenase; 6. 2-Methylbutyryl-CoA dehydrogenase; 7. Enol-CoA dehydrogenase; 
8. 3-Hydroxyisobutyryl-CoA deacylase; 9. 3-Hydroxyisobutyryl-CoA dehydrogenase; 10. Methylmalonic semialdehyde dehydrogenase; 11. 
Propionyl-CoA carboxylase; 12. Methylmalonyl-CoA mutase. Abbreviations: FAD+  = flavin adenine dinucleotide; GDP = guanosine diphosphate; 
GTP = guanosine triphosphate; NAD+  = nicotinamide adenine dinucleotide; TCA = tricarboxylic acid

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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61]. When a lot of aromatic amino acids pass through 
the blood–brain barrier, the concentrations of various 
amines are increased, like tyramine and serotonin, which 
impairs brain function [62, 63]. BCAAs supplementation 
in diet may protect barrier function by inhibiting the pas-
sage of aromatic amino acids across the blood–brain bar-
rier [64–66]. In the diet of older growing pigs, high levels 
of neutral amino acids enhanced tryptophan deficiency, 
resulting in decreased feed intake and growth perfor-
mance [67]. Supplementation of sufficient valine (0.1%) 
in marginal tryptophan diet (0.004%) enhanced the body 
weight, while supplementation of sufficient tryptophan 
(0.054%) in marginal valine diet (0) decreased the body 
weight. In addition, the pigs in the low CP group (17.8%) 
showed the same performance as the high CP group 
when sufficient valine (0.1%) and tryptophan (0.054%) 
were added. It was confirmed that dietary valine and 
tryptophan levels significantly interact with each other 
on body weight gain of piglets [24].

Biological functions of valine in swine
As essential amino acids in livestock, BCAAs show spe-
cial nutritional effects [10]. Valine plays positive roles in 
swine to regulate energy supply, gut microbiota structure, 

immune functions, and reproductive performance, 
whose biological functions have been reviewed in this 
part (Fig. 3).

Energy supply
Valine is one of the most efficient energy-generating 
amino acids through the oxidation of branched-chain 
α-keto acid dehydrogenase complex [68]. As the primary 
end product of valine metabolism, β-hydroxyisobutyrate 
is an ideal gluconeogenic substrate and a key indicator for 
the fate of valine in the muscle [38]. For mammals, valine 
also participated in glutamine synthesis [69]. Under star-
vation conditions, transaminase activities and amino acid 
oxidation rate are significantly enhanced, resulting in 
accelerated oxidation of BCAAs [70, 71].

In addition, it has been shown in fishes and mice that 
valine could influence appetite by regulating the expres-
sion of neuropeptides or hormones in the hypothalamus 
[72, 73]. Similarly, the important links between valine 
deficiency and appetite regulation were demonstrated in 
pigs [74]. In pig farms, valine deficiency could cause the 
suppressive effect on feed intake due to an excess sup-
ply of leucine, which is through decreasing the absorp-
tion of large neutral amino acid and overstimulating the 
mTOR signaling pathway [14, 43]. As a prominent signal 

Fig. 2  Interaction of valine with amino acids. A Valine competes with leucine for branched-chain amino acid transaminase (BCAT). High leucine 
competes for the BCAT and enhance the catabolism of valine. B Valine competes with leucine and isoleucine for the amino acid transporters 
in intestinal epithelial. C The BCAAs (leucine, isoleucine and valine) and aromatic amino acids, compete for transport into the brain through L-type 
amino acid transporters
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to interfere with the regulation of neurons in the hypo-
thalamic, cholecystokinin may be transported to the 
blood to activate pro-opiomelanocortin neuron involved 
in feeding behaviors [75–78]. Evidence shows that high 
valine content could reduce the cholecystokinin expres-
sion in the gastric fundus. After feeding at the standard-
ized ileal digestible (SID) valine:lysine ratio of 0.65 in a 
reduced protein diet, compared with the SID valine:lysine 
ratio of 0.45, cholecystokinin expression was significantly 
down-regulated, resulting in the lower expression of pro-
opiomelanocortin and the improved feed intake, which 
increased growth performance in weaned piglets [79].

Under severe protein restriction (CP ≤ 14%), sup-
plemental valine improves the growth performance in 
pigs [80, 81]. A combination of isoleucine at NRC level 
and added valine above NRC level in weaned piglet diet 
for 35 d increased thermal radiation and decreased the 
digestibility of nitrogen, as well as recovered the inhibi-
tory effects of very-low-protein diet on feed intake and 
growth performance [25, 82]. Optimum dietary valine 
could also improve growth performance by regulating 

lipid metabolism [83]. In IPEC-J2 cells, supplemental 
valine could stimulate triglyceride synthesis by increasing 
3-hydroxyisobutyrate concentration, which is the only 
valine metabolites that could survive mitochondrial oxi-
dation, and may promote fatty acid transport via upregu-
lation of the fatty acid transporter mechanism [84].

Regulation of gut microbiota
Recently, mounting evidences have unveiled that gut 
microbiota plays a crucial role in BCAAs metabolism, 
including valine [85]. Several studies have investigated 
the correlation between gut microbiota composition and 
dietary valine level in livestock [81, 82, 86].

On the one hand, as a part of the intestinal protec-
tive barrier, host defense peptides produced by the gut 
mucosa could defend against pathogens and clear inflam-
mation [87, 88]. In the swine, addition BCAAs (valine: 
leucine:isoleucine = 0.2 mmol/L:0.1 mmol/L:0.8 mmol/L) 
improved the immune defense ability by stimulating the 
expression of porcine epithelial β-defensin in the Sirt1/
ERK/90RSK signaling pathway. The result was similar in 

Fig. 3  The roles of valine in swine nutrition and whole-body homeostasis. Apart from serving as an energy source, valine has multiple healthy 
functions, like improving the structure of gut microbiota, immune functions and reproductive performances. Abbreviations: Ig = immunoglobulin; 
mTOR = mammalian target of rapamycin; Sirt1/ERK/90RSK = sirtuin 1/the extracellular signal-regulated kinase/p90 ribosomal S6 kinase
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intestinal porcine epithelial cells (IPEC-J2) [89]. This sug-
gests that valine could be used as a means of nutritional 
intervention to induce the production of endogenous 
host defense peptides in swine, to resist the invasion of 
pathogen, like Salmonella Typhimurium, Listeria mono-
cytogenes and Erysipelothrix rhusiopathiae [90].

On the other hand, valine may be involved in regulat-
ing gut microbial species [91]. Apart from the antibiotic 
therapy, one strategy to ameliorate post-weaning diar-
rhea is to alter the dietary protein quantity and quality to 
manipulate gastrointestinal structure and function [92]. 
Excessive proteins always induce diarrhea in piglets, with 
the increased relative abundances of Fusobacterium and 
Proteobacteria and some potentially toxic substances, 
including ammonia and indoles in the intestine [35, 
93–96]. In protein restricted piglets, the proliferation of 
Gammaproteobacteria, Lactobacillales, and Aeromon-
adales was observed by supplementing valine (0.80%) and 
leucine (1.43%) for 35 d, as well as markedly enhanced the 
feed intake and the body weight gain [81]. Another evi-
dence supported that the improvement of valine (0.44%) 
in LP diet on growth performance was associated with 
the high population of Mogibacterium in colon content 
[82]. The nonmetric multidimensional scaling showed 
the significant separation and cluster between control 
group and LP group supplementing with BCAAs (valine
:leucine:isoleucine = 0.57:0.82:0.55) in nursery pigs. The 
supplemental BCAAs diet regulated the fecal microbiota 
composition, by increasing the abundances of Paludibac-
teraceae and Synergistaceae and reducing the abundances 
of Streptococcaceae, Oxyphotobacteria_unclassifed, Pseu-
domonadaceae, and Shewanellaceae [97].

Noteworthily, valine could be used as a chemical 
building block to enhance phagocytosis of macrophages 
against drug-resistant pathogens [98]. Antimicrobial 
peptide G6 is rich in valine and arginine residues, which 
decreases the bacterial load by 103-fold in sepsis mice 
and increases survival after 7 d of Salmonella Typh-
imurium infection [99, 100]. Similarly, exogenous valine 
had the capacity to activate the PI3K/Akt1 pathway and 
reduced the load of multidrug-resistant pathogens in 
mice [98].

Immunity
As the essential substrates of protein biosynthesis, 
BCAAs could promote intestinal development and 
enterocyte proliferation [101]. The absence of BCAAs 
impairs the innate immune function by decreasing lym-
phocytes and white blood cells [102–104]. Besides, the 
deficiency of BCAAs caused atrophy of the thymus and 
spleens [105, 106]. In the BCAAs, valine resulted in 
impairment of bone metabolism in particular [107]. The 
valine deficiency reduces the lymphocyte proliferation 

and impedes the growth of thymus and peripheral lym-
phoid tissue [108–110].

Secretory immunoglobulin A (SIgA) is an immuno-
globulin (Ig) in the intestinal lumen. The secretion of 
SIgA was stimulated by BCAAs to thereby inhibiting 
pathogens into the lamina propria [103, 104]. In a protein 
restricted diet (17% CP) of weaned piglets, supplemented 
with BCAAs (valine:isoleucine:leucine = 0.27%:0.19%:0.07%)  
improved intestinal immune defense function via pro-
tecting villous morphology and increasing IgA levels in 
jejunum and ileum [111]. Similarly, valine participates 
in immune functions by increasing the concentration of 
IgM in serum of sows [112]. A study used CD14 positive 
monocytes isolated from peripheral blood mononuclear 
cells and supplemented valine for hepatitis C virus cir-
rhotic patients, which increased cytokine production and 
the allostimulatory capacity of human monocyte-derived 
dendritic cells [113].

Nutrition and immunoglobulins are obtained by new-
born piglets from ingested colostrum, which are used 
for the development of the systemic immunity in piglets 
[114, 115]. Studies have shown that within 24  h of sow 
delivery, compared with colostrum-fed group, colos-
trum-deprived group still decreased concentrations of 
IgG in plasma and IgA in feces even though they nor-
mally suckle milk after 24  h [116]. As the continuation 
of the mother–infant bond, colostrum protects the pig-
lets until their own immune system sufficiently matured 
to respond to foreign antigens [117]. Improved immune 
function and nutrition-related physiological function 
were observed in sows fed diet at valine:lysine ratio of 
0.87. In their offspring, serum albumin concentration was 
also increased [112]. Moreover, sows are more likely to 
be active in the loose-housed and free-farrowing system, 
resulting in low survival rate of piglets by crushing [118]. 
Evidence in the loose housing suggested that the heavy 
piglets had a higher concentration of valine in serum 
than the lighter littermates [119].

Reproductive performance
Sow milk provides a large range of nutrients, bioactive 
compounds and beneficial microorganisms [120–123]. 
Sow nutrition plays an important role in mammary 
development and milk production of sows, which affects 
the survivability and weaning weight of piglets [124, 125]. 
Among all amino acids, the uptake of BCAAs exceeds 
the output in milk in the mammary gland of lactation 
sows. In lactating porcine mammary tissue, BCAAs are 
mainly further metabolized into glutamine and aspartate 
that are abundant amino acids in milk protein [69, 126]. 
Compared with stage of gestation, the perinatal period 
of energy requirements increases by 60%, and as well as 
amino acid requirements more than double in sows [127, 
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128]. Notably, at the tissue level, other amino acids such 
as leucine inhibit the uptake of valine in sow mammary 
tissue [129].

The high absorption of valine during lactation sug-
gested that valine may play an important role in the 
metabolism of mammary gland [130]. For sows, the total 
dietary valine:lysine ratio at 0.99:1 also enhanced valine 
concentration in milk [131]. Valine effectively regulated 
mobilization of body reserves for lactation sows with 
high feed intake. With the number of weaned piglets 
elevating, the valine requirements in milk and mammary 
gland tissue also increase [22, 132]. It was confirmed that 
the addition of 0.116 mmol/L valine promoted the mon-
ospermic fertilization and stimulated male pronuclear 
formation after maturation [133]. Moreover, the expo-
sure of porcine mammary epithelial cell to 0.9  mmol/L 
valine increased the proliferation of porcine mammary 
epithelial cells, and promoted protein synthesis in colos-
trum via the mammalian target of rapamycin signaling 
pathway [134]. Growth of neonate is partly dependent 
on the sufficient protein content of sow milk [135]. Dur-
ing late gestation in gilts, compared with the first day of 
lactation, dietary valine addition from 63% to 93% lin-
early increased the protein synthesis and the fat synthe-
sis in colostrum on the tenth day, which increased from 
0.01% to 26.3% and from 1.3% to 72.4%, respectively 
[136]. Elevating valine level from 0.8% to 1.2% in sow 
diet led to higher weaning weight of piglets [137]. The 
valine concentration requirement of lactation sows is 
supposed to exceed 6.5 g/kg to avoid seriously decreas-
ing feed intake and milk yield of sows and growth per-
formance of piglets [138].

Since lactation is a period of high metabolic load, sows 
are sensitive to ambient temperature [139]. Heat stress 
commonly induces oxidative stress and protein metabo-
lism imbalance [140–142]. A good deal of conducted 
research indicated substantial quantities of fertility and 
reproductive problems within the heat-stressed sows 
[143]. Heat stress is usually along with the long intervals 
from weaning to estrus, low farrowing rates, depressed 
litter size, and reduced milk production, which eventually 
had negative effects on piglet growth and weaning weight 
[144–146]. Under heat stress, valine is a potential agent 
for alleviating seasonal infertility of sows by improving 
feed intake and increasing the concentration of lactose in 
colostrum [112].

Valine requirements in different stages of swine
In pig diet, lysine, threonine, methionine, and trypto-
phan have been acknowledged as limiting amino acids 
[21]. Recently, valine is considered to be the next limiting 
amino acid in swine [21, 147]. It has to be kept in mind 
that the amino acid requirements vary with the duration 

of diet regimen, genetic background, and physiologi-
cal status of pigs [98, 148]. The nutrient requirements 
of valine in different experiments were summarized 
in Table  2 [24, 79, 80, 82, 138, 149–159]. The recom-
mended valine requirement for weaned piglets is 64% 
in the NRC 2012 [25]. For the same CP level at 17.7% in 
weaned piglets, Wiltafsky et  al. [151] assumed that the 
SID valine:lysine ratio of 66% could achieve optimal aver-
age daily gain (ADG), while Jansman et al. [24] reported 
that when the SID of valine:lysine increased from 67% 
to 75%, the better responses of feed intake and body 
weight gain were achieved. Additionally, the predicted 
valine requirements in piglets are also varied in differ-
ent computational models. In a quadratic polynomial 
model, Clark et al. [160] estimated that when the dietary 
SID valine:lysine ratio was 71.7%, the ADG:average daily 
feed intake might reach the maximum. According to the 
response curves of weaned piglets in the LP diet (14.64% 
CP), the SID valine:lysine requirements were predicted as 
67.7% and 71.7% for high feed conversion rate, in the lin-
ear-plateau and curvilinear-plateau models, respectively 
[149]. In the future, based on existing standards and the 
accumulation of subsequent trail, researchers need to 
further optimize and refine the nutritional requirements 
of swine, so as to adapt to various physiological and envi-
ronmental conditions, such as different genders, breeds, 
seasons, and regions.

Likewise, in LP diet, the growing-finishing pigs have 
the higher requirement for valine compared with tradi-
tional diets [21]. A study has shown that supplemented 
with 0.15% valine in a low CP diet (17% CP) had less 
severe diarrhea symptoms and contributed to the simi-
lar performance of ADG, as in a high CP diet (20% CP) 
in piglets [161]. However, a potential disadvantage of 
blindly reducing CP level is the decreased growth perfor-
mance following weaning caused by a dietary imbalance 
of amino acid [20]. Much work remains to be done on 
the optimal nutrient requirements in the LP diet which 
valine would be most effective in improving growth per-
formance in swine. Targeted application of valine to sup-
port animal demands should be valued to balance feed 
costs and breeding benefits.

The contents of the other two BCAAs also affect the 
valine requirements of pigs due to the antagonistic interac-
tions among BCAAs. The high level of leucine potentially 
reduces serum valine concentration, which means that 
the high leucine diet tends to require more valine supple-
mentation [43]. The addition of valine (7.8 g/kg) partially 
mitigated the decrease in feed intake caused by the high-
leucine diet (21.3 g/kg), and greatly increased the daily gain 
and feed conversion rate of piglets [52]. Due to the plasma 
membrane transport system L, which is in many cells the 
only (efficient) pathway for BCAA, isoleucine competes 
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for amino acid transporters, thereby inhibiting the absorp-
tion of valine [44, 61]. For carcass traits and meat quality in 
finishing pigs, high dietary valine intake undermined water 
holding capacity, decreased sarcoplasmic protein solubility 
and pH24h value, whereas high dietary isoleucine increased 
pH24h value, sarcomere length, suggesting that valine and 
isoleucine had significant interactions in backfat thickness, 
water distribution forms and myofibrillar protein solubility 
[56]. However, in terms of nutrient requirements, there are 
currently no experiments demonstrating the interaction 
between valine and isoleucine.

Conclusions
Herein, metabolic pathways of valine and its interactions 
with other amino acids were summarized. We empha-
sized the biological functions and the nutrient require-
ments of valine at different growth stages in swine. Given 
that amino acid requirements vary with the duration of 
the diet regimen, genetic background and physiological 
state of pigs, the targeted application of valine is essen-
tial [98, 148]. In animal husbandry, supplementation with 
valine not only increases growth and reproductive perfor-
mances, but also regulates gut microbiota and immune 
functions. Moreover, in the human brain, the deficiency 
of valine caused neurological defects and mental retarda-
tion [162]. Likewise, BCAA treatment induced reorgani-
zation of actin and cytoskeleton, particularly valine [163]. 
High concentration of BCAAs reduced the migration and 
invasion ability of breast cancer cells, which had a positive 
effect on the treatment of breast cancer [164]. In recent 
years, there has been a growing global demand for valine 
in animal feed, commercial medical treatment and indus-
trial applications [165]. It would be worthwhile to further 
investigate their potential functionality in life science.

In pig production, some mutants or engineered strains 
were obtained for an overproduction of specific amino 
acids to meet the swine demand [31–33]. The efficient 
application of the valine has been advanced by engineered 
Corynebacterium glutamicum [166], E. coli [167], Bacillus 
subtilis [168], Bacillus licheniformis [169], Saccharomy-
ces cerevisiae [165]. In animal nutrition, the appropriate 
L-valine produced by fermentation using E. coli CCTCC 
M2020321 or E. coli KCCM 80159 was added to the diet, 
which was safe for consumers, users and the environment, 
and the valine produced by fermentation also was used as 
an effective source of nutritionally essential amino acid 
L-valine in non-ruminant animals [170, 171]. However, 
considering that competitive pathways have the interde-
pendency and metabolic burdens in engineered strains, 
it is a challenge to optimize high valine production for a 
single bacterial strain [172]. In the coming period, high-
throughput biosensor screening would be instrumental in 
high-yielding valine producer strains [32, 172].
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