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Abstract 

Background The aim of this study was to investigate the role of necroptosis in deoxynivalenol (DON)-induced liver 
injury and inflammation in weaned piglets.

Methods In Exp. 1, 12 weaned piglets were divided into 2 groups including pigs fed basal diet and pigs fed diet 
contaminated with 4 mg/kg DON for 21 d. In Exp. 2, 12 weaned piglets were divided into 2 groups including con-
trol piglets and piglets given a gavage of 2 mg/kg body weight (BW) DON. In Exp. 3, 24 weaned piglets were used 
in a 2 × 2 factorial design and the main factors including necrostatin-1 (Nec-1) (DMSO or 0.5 mg/kg BW Nec-1) 
and DON challenge (saline or 2 mg/kg BW DON gavage). On 21 d in Exp. 1, or at 6 h post DON gavage in Exp. 2 and 3, 
pigs were killed for blood samples and liver tissues. Liver histology, blood biochemical indicators, and liver inflamma-
tion and necroptosis signals were tested.

Results Dietary or oral gavage with DON caused liver morphological damage in piglets. Dietary DON led to hepato-
cyte damage indicated by increased aspartate transaminase (AST) activity and AST/alanine aminotransferase (ALT) 
ratio, and DON gavage also caused hepatocyte damage and cholestasis indicated by increased AST and alkaline 
phosphatase (AKP) activities. Dietary DON caused liver necroptosis indicated by increased protein abundance 
of total receptor interacting protein kinase 3 (t-RIP3) and total mixed lineage kinase domain-like protein (t-MLKL). 
Moreover, DON gavage increased mRNA expression of interleukin (IL)-6 and IL-1β in liver. DON gavage also induced 
liver necroptosis demonstrated by increased protein abundance of t-RIP3, phosphorylated-RIP3 (p-RIP3), t-MLKL 
and p-MLKL. However, pretreatment with Nec-1, a specific inhibitor of necroptosis, inhibited liver necroptosis indi-
cated by decreased protein expression of t-RIP3, p-RIP3, t-MLKL and p-MLKL. Nec-1 pretreatment reduced liver 
morphological damage after DON gavage. Pretreatment with Nec-1 also attenuated liver damage induced by DON 
indicated by decreased activities of AST and AKP. Furthermore, Nec-1 pretreatment inhibited liver mRNA expression 
of IL-6 and IL-1β after DON challenge.

Conclusions Our data demonstrate for the first time that necroptosis contributes to DON-induced liver injury 
and inflammation in piglets.
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Introduction
Deoxynivalenol (DON) is the most common myco-
toxin in cereal products, which was mainly produced by 
Fusarium graminearum and F. culmorum [1]. It is well 
known that this mycotoxin has a wide range of toxicity 
[2], and has harmful effects on the health of livestock 
[3]. Different animals have different sensitivity to its 
exposure, among which pigs are the most sensitive to 
it [4]. DON contamination causes diarrhea, anorexia, 
vomiting, and further growth retardation and other 
symptoms in pigs [5]. Emerging evidence showed that 
both low or high concentrations of DON could cause 
damage of tissues including intestine, liver and kid-
ney in animals [1, 6]. Especially, liver is an important 
organ for DON-induced toxicity [7]. DON can destroy 
liver morphology, induce inflammatory response, and 
increase hepatocyte death [8]. However, the molecu-
lar mechanism by which this mycotoxin induces liver 
injury and inflammation in pigs remains unclear.

Liver injury is closely related to hepatocyte death. 
There are several types of cell death, including necro-
sis, apoptosis and autophagy [9]. Traditionally, cell 
necrosis was thought to be an uncontrolled type of 
cell death [10, 11]. In recent years, a new cell death 
mode, necroptosis, has been identified and attracted 
researcher’s attention because it is different from other 
cell death [12]. Necroptosis is an active and orderly way 
of cell death determined by genes, independent of the 
cysteine aspartate protease (caspase) pathway, and gen-
erally occurs when apoptosis is inhibited, and eventu-
ally triggers inflammatory response of neighboring cells 
[13]. Necroptosis morphologically exhibits the features 
of necrosis [14]. However, it is regulated by a unique 
signaling pathway involving the key regulators such as 
receptor interacting protein kinase 1 (RIP1), RIP3, and 
mixed lineage kinase domain-like protein (MLKL) [15]. 
Previous research has shown that necroptosis plays an 
important role in tissue damage caused by multiple fac-
tors such as ischemia-reperfusion and inflammatory 
response [16–18]. Additionally, inhibition of necrop-
tosis signaling pathway could attenuate tissue dam-
age induced by these factors [18–20]. However, it is 
still unknown whether necroptosis is involved in liver 
injury and inflammation after DON exposure in piglets.

So far, the role of necroptosis in liver injury caused by 
DON has not been reported. Therefore, in this study, 
we firstly fed weaned piglets with DON-contaminated 
diet to induce chronic live damage. Secondly, piglets 
were given an oral gavage with DON to induce acute 
liver damage. Furthermore, a necroptosis inhibitor 
necrostatin-1 (Nec-1) was used to explore whether 
necroptosis was involved in DON-induced liver injury 
and inflammation.

Materials and methods
Experimental animals and design
All experiments were approved by the Animal Care 
and Use Committee of Wuhan Polytechnic University 
(Wuhan, China). The approval number of the Ethical 
Committee of Use of Animals was EM20220425001. A 
total of 48 healthy 28-day-old Duroc × Landrace × Large 
crossbred weaned piglets with similar weight of 
7.1 ± 0.8  kg were purchased from Aodeng Agricultural 
and Animal Husbandry Technology Co., Ltd. (Hubei, 
China). In all experiments, pigs were individually penned 
and there were 6 replicate pens for each treatment. The 
pigs were adapted for 7 d. DON was cultivated from 
Fusarium graminearum W3008 and added to the basal 
diet [21, 22]. DON for oral gavage was purchased from 
Qingdao Pribolab Bioengineering Co., Ltd. (Qingdao, 
China).

In Exp. 1, 12 piglets (7.2 ± 0.2  kg) were randomly 
divided into 2 groups including control group and 
DON group. Piglets were fed the control feed or 4 mg/kg 
DON-contaminated feed for 21 d. The concentra-
tion of DON in diet was chosen according to previous 
research [23, 24] and our preliminary study. The DON 
concentrations in basal diet and DON-contaminated 
diet were 0.3 mg/kg and 4 mg/kg, respectively. After 21 d, 
piglets were weighed and blood samples were collected. 
Then piglets were anesthetized by intramuscular injec-
tion with Zoletil® 50 (10  mg/kg BW) to euthanasia for 
liver samples. In Exp. 2, another 12 piglets (7.1 ± 0.4 kg) 
were randomly divided into 2 groups including piglets 
given a gavage with 2 mg/kg BW DON or an equal vol-
ume of normal saline. At 6  h following gavage of saline 
or DON, blood and liver samples were collected in the 
same method as Exp. 1. The concentration of DON gav-
age to piglets was chosen according to previous research 
[25, 26] and our preliminary study. In Exp. 3, 24 weaned 
piglets (7.1 ± 0.6 kg) were randomly divided into 4 groups 
by a 2 × 2 factorial design with 6 pigs in each treatment. 
Piglets were given a gavage with 2 mg/kg BW DON or an 
equal volume of normal saline 30 min after pretreatment 
with intraperitoneal injection of 0.5 mg/kg BW Nec-1 or 
an equal volume of 5% dimethylsulfoxide (DMSO). Blood 
samples and liver tissues were collected at 6 h post gavage 
of DON or saline in the same method as Exp. 1.

Blood and liver sample collection
Blood samples were collected by jugular puncture into 
a 10-mL vacuum tube and centrifuged to collect serum. 
Then serum was stored at −80 °C for hepatocyte damage 
and cholestasis analysis. After collecting blood samples, 
piglets were euthanized to gather liver samples (about 0.5  cm2). 
A part of liver samples was immobilized in 4% paraform-
aldehyde for histological analysis. The other liver tissue 
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was cut into small pieces, quick-frozen in liquid nitrogen 
and stored at −80 °C for further analysis.

DON concentration
The concentration of DON in serum and liver was 
detected by an  AgraQuant® DON ELISA Test Kit follow-
ing the manufacture’s protocol (Romer Labs, Singapore).

Hepatocyte damage indexes
The activities of alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST) and alkaline phosphatase 
(AKP) in serum were determined by Hitachi 7020 auto-
matic biochemical analyzer according to the kit instruc-
tions (AST: KP100, ALT: KP622, AKP: EK872; Fujifilm 
Wako Pure Chemical Corp., Tokyo, Japan).

Liver histology
The liver samples were dehydrated and embedded, then 
sliced into 5 μm paraffin sections, and finally stained by 
hematoxylin-eosin (HE) according to He et al. [27]. The 
liver tissue morphology was observed by Olympus light 
microscope (Olympus, Tokyo, Japan).

Liver ultrastructure
Fragments of liver tissue (1.5  mm × 1.5  mm) were fixed 
in 2.5% glutaraldehyde fixative solution, and the sam-
ples were treated and observed by transmission electron 
microscopy (TEM) in Seville Biotechnology Co., Ltd. 
(Wuhan, China). The specific methods according to He 
et al. [27].

mRNA expression of pro‑inflammatory cytokines
Total RNA was extracted from liver tissues using the 
TRIzol reagent (TaKaRa Biotechnology, Beijing, China) 
according to the manufacturer’s instruction. After RNA 
quantitation and reversion, quantitative PCR was car-
ried out on an ABI 7500 Real-Time PCR system (Applied 
Biosystems, Life Technologies) using a SYBR Premix Ex 
Taq (Tli RNaseH Plus) qPCR kit (TaKaRa Biotechnol-
ogy, Dalian, China). Results were analyzed by the  2−ΔΔCt 
method of Livak and Schmittgen [28], with GAPDH as 
the housekeeping gene. The relative mRNA abundance of 
each target gene was normalized to the control group. All 
samples were run in triplicate. Primers used for real-time 
PCR analyses are listed in Additional file 1.

Protein expression of necroptosis signals
Liver samples were homogenized by lysis buffer and 
centrifuged at 4  °C. The supernatants were collected for 
Western blot and protein assay. After determining the 
content of the protein, liver proteins were separated on 
a polyacrylamide gel and transferred onto polyvinylidene 
difluoride membranes. Immunoblots were blocked with 

3% BSA and incubated overnight with primary antibod-
ies. Specific primary antibodies including mouse anti-t-
RIP1 (1:1,000, LifeSpan BioSciences, Seattle, Washington, 
USA), rabbit anti-phosphorylated RIP1 (p-RIP1) (1:2,000, 
Cell Signaling Technology, Boston, Massachusetts, USA), 
mouse anti-t-RIP3 (1:1,000, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), rabbit anti-phosphorylated RIP3 
(p-RIP3) (1:2,000, Cell Signaling Technology, Boston, 
Massachusetts, USA), rabbit anti-t-MLKL (1:1,000, Cell 
Signaling Technology, Boston, Massachusetts, USA), rab-
bit anti-phosphorylated MLKL (p-MLKL) (1:1,000, Cell 
Signaling Technology, Boston, Massachusetts, USA) and 
mouse anti-β-actin (1:10,000, Sigma Aldrich, St. Louis, 
Missouri, USA). Then anti-rabbit IgG HRP-conjugated 
antibody (1:5,000, AntGene Biotech, Wuhan, China) was 
incubated at room temperature. After washing, enhanced 
chemiluminescence ECL kit (Amersham, Piscataway, 
New Jersey, USA) was used to visualize blots, and the 
band density was detected and analyzed in Alpha Inno-
tech Imaging System (Syngene, Cambridge, UK). The rel-
ative protein abundance of target proteins was expressed 
as the ratio of target protein/β-actin protein. The phos-
phorylated proteins were normalized with total protein 
abundance.

Statistical analysis
In Exp.  1 and 2, data were analyzed by Statistical Anal-
ysis System (SAS, Cary, NC, USA) software for inde-
pendent-sample t-test. In Exp. 3, data were analyzed by 
ANOVA using the general linear model procedures for 
a 2 × 2 factorial design. The model included the effects 
of DON, Nec-1 and their interaction. When significant 
Nec-1 × DON interactions occurred, multiple com-
parison tests were performed using Duncan’s multiple 
comparisons. All data are expressed as mean ± standard 
error  (SE). P ≤ 0.05 was considered statistically signifi-
cant. Instance in which 0.05 < P ≤ 0.1 were considered as 
trends.

Results
DON impairs liver morphology and increases liver enzyme 
activity
No obvious morphologic changes were found in livers of 
control pigs (Figs. 1A and 2A). Dietary supplementation 
or gavage with DON caused nucleolysis, nuclear pykno-
sis, and disordered arrangement of hepatocyte cords in 
liver of piglets.

Compared with control group, dietary DON sig-
nificantly increased serum AST activity and AST/ALT 
ratio (P < 0.05), but had no effect on serum ALT activity 
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(Fig.  1B–E). DON gavage increased DON concentra-
tion in serum and liver (Additional file  2). DON gav-
age significantly increased activities of serum AST and 
AKP (P < 0.05), but had no effect on serum ALT activity 
and AST/ALT ratio (Fig. 2B–E).

DON activates liver inflammatory response
Compared with control group, dietary DON had no 
effect on mRNA expression of liver tumor necrosis 
factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β 
(IL-1β) (Fig.  3A). However, DON gavage significantly 

increased mRNA expression of IL-6 and IL-1β (P < 0.05), 
but had no effect on mRNA expression of TNF-α 
(Fig. 3B).

DON induces hepatocyte necroptosis
Compared with control group, dietary DON signifi-
cantly increased protein abundance of liver t-RIP3 and 
t-MLKL (P < 0.05) (Fig.  4A and B). DON gavage sig-
nificantly increased protein abundance of liver t-RIP3, 
p-RIP3, t-MLKL and p-MLKL (P < 0.05) (Fig. 4C and D).

Fig. 1 Effects of dietary DON in piglet’s liver morphology and enzymes. Control (Con) group was fed a basal diet, and DON group was fed a diet 
containing 4 mg/kg DON. A Haematoxylin/eosin-stained liver sections. (a) hepatocytes nucleolysis and (b) nuclear pyknosis. The magnification 
was 40×. B–E Serum AST, ALT, AKP activities and AST/ALT ratio. Values are means ± SE, n = 6. abValues without a common letter differ significantly (P 
< 0.05). AKP, Alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate transaminase; DON, Deoxynivalenol



Page 5 of 11Xu et al. Journal of Animal Science and Biotechnology          (2024) 15:160  

Nec‑1 inhibits DON‑induced hepatocyte necroptosis
DON gavage increased DON concentration in serum 
and liver (Additional file  2). However, Nec-1 decreased 
DON concentration in serum and liver after DON gavage 
(Additional file 3). In addition, DON gavage significantly 
increased protein abundance of t-RIP3, p-RIP3, p-RIP3/ 
t-RIP3, t-MLKL and p-MLKL (P < 0.05, Fig. 5). There were 
Nec-1 × DON interactions (P < 0.05) observed for t-RIP3 
and t-MLKL, in which Nec-1 decreased the protein 
expression of t-RIP3 and t-MLKL in DON-challenged 

piglets, however, t-RIP3 and t-MLKL did not differ 
among non-DON-challenged piglets (Fig. 5D and J).

Nec‑1 attenuates DON‑induced liver injury, dysfunction 
and inflammation
DON challenge led to liver damage, however, inhibi-
tion of necroptosis by Nec-1 pretreatment alleviated 
DON-caused liver damage indicated by mild hepatocyte 
nucleolysis, nuclear pyknosis, and disordered arrange-
ment of hepatocyte cords (Fig.  6A). Moreover, Nec-1 

Fig. 2 Effects of DON gavage in piglet’s liver morphology and enzymes. Control (Con) group was given a gavage with an equal volume of normal 
saline, and DON group was given an oral gavage with 2 mg/kg BW DON. A Haematoxylin/eosin-stained liver sections. (a) hepatocytes nucleolysis 
and (b) nuclear pyknosis. The magnification was 40×. B–E Serum AST, ALT, AKP activities and AST/ALT ratio. Values are means ± SE, n = 6. a,bValues 
without a common letter differ significantly (P < 0.05). AKP, Alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate transaminase; DON, 
Deoxynivalenol



Page 6 of 11Xu et al. Journal of Animal Science and Biotechnology          (2024) 15:160 

Fig. 3 Effects of dietary or gavage with DON on mRNA expression of pro-inflammatory cytokines in liver in piglets. A The mRNA expression of IL-6, 
IL-1β and TNF-α after dietary DON exposure. B The mRNA expression of IL-6, IL-1β and TNF-α after DON gavage. Values are means ± SE, n = 6. a,bValues 
without a common letter differ significantly (P < 0.05). DON, Deoxynivalenol; IL-6, Interleukin-6; IL-1β, Interleukin-1β; TNF-α, Tumor necrosis factor-α

Fig. 4 Effects of dietary or gavage with DON on protein expression of necroptosis signals in liver cells of piglets. A The protein expression 
of necroptosis signals after dietary DON exposure. B Representative bands of necroptosis signals after dietary DON exposure. C The protein 
expression of necroptosis signals after DON gavage. D Representative bands of necroptosis signals after DON gavage. Values are means ± SE, n = 6. 
a,bValues without a common letter differ significantly (P < 0.05). DON, Deoxynivalenol; p-MLKL, Phosphorylated mixed lineage kinase domain-like 
protein; p-RIP1, Phosphorylated receptor interacting protein kinase 1; p-RIP3, Phosphorylated receptor interacting protein kinase 3; t-MLKL, Total 
mixed lineage kinase domain-like protein; t-RIP1, Total receptor interacting protein kinase 1; t-RIP3, Total receptor interacting protein kinase 3
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alleviated DON-caused mitochondrial vacuolation, mito-
chondrial crest fracture, and endoplasmic reticulum 
dilation (Fig.  6B). DON gavage also induced hepatocyte 
injury with increased cell membrane permeability due to 
higher AST and AKP activities (Fig.  6C–F). There were 
Nec-1 × DON interactions observed (P < 0.05) for AST 
and AKP in which Nec-1 decreased the activities of AST 
and AKP in DON-challenged piglets, whereas the activi-
ties of AST and AKP did not differ in non-DON chal-
lenged piglets (Fig. 6C–F).

DON gavage significantly increased mRNA expres-
sion of IL-1β and IL-6 in liver (P < 0.05, Fig. 6G and H). 
There was a trend for Nec-1 × DON interaction observed 
(P < 0.10) for IL-6 in which Nec-1 decreased the mRNA 
expression of IL-6 in DON-challenged piglets, whereas 
the mRNA expression of IL-6 did not differ in non-DON 
challenged piglets (Fig. 6G–I).

Discussion
DON is one of the most common and dangerous myco-
toxins, which widely exists in feed, posing great threat to 
animal’s health [2]. In livestock production, DON pol-
lution is inevitable. After DON intake, gastrointestinal 
tract was the primary target organ. However, as the most 
important detoxification organ, liver becomes another 
equally important target organ attacked by DON [8]. 

However, till now, little is known that how DON damages 
the liver of piglets.

In present study, we first fed DON-contaminated feed 
to weaned piglets to investigate the effect of dietary 
DON on liver. We found that dietary DON led to disor-
der of hepatocyte cords, liver nuclear lysis, pyknosis, and 
severe vacuolization of hepatocytes, which suggests that 
DON caused liver injury. This is consistent with Peng et 
al. [29]  who reported that long-term consumption of 
DON-contaminated feed led to liver damage in mice. 
The histological lesions can lead to an increase in cellular 
permeability of hepatocytes and caused extravasation of 
enzymes such as AST, ALT and AKP. Therefore, higher 
AST and ALT activities in plasma indicate hepatocyte 
damage, and higher AKP activity indicates cholestasis. In 
our study, the enzymes agreed with the results of changes 
in cellular morphology of liver. Similarly, Wu  et al.  [30] 
also found that long-term feeding of growing pigs with 
diets containing 3 mg/kg DON significantly increased the 
activities of serum AST and AKP in pig.

In order to further investigate the effect of DON expo-
sure on liver, we gave an oral gavage with DON to piglets. 
Expectedly, we found that DON gavage also caused liver 
morphology damage, which is consistent with the results 
of DON supplementation in feed. Moreover, DON gav-
age significantly increased AST and AKP activities in 

Fig. 5 Effects of Nec-1 on protein expression of necroptosis signals in liver of piglets after DON gavage. Piglets were given a gavage with 2 mg/kg 
BW DON or an equal volume of normal saline after intraperitoneal injection of 0.5 mg/kg BW Nec-1 or an equal volume of 5% dimethylsulfoxide 
(DMSO). Pigs were euthanized at 6 h after DON or saline gavage. A–I Protein expression of necroptosis signals. J Representative bands. Values are 
means ± SE, n = 6. a,bValues without a common letter differ significantly (P < 0.05). DON, Deoxynivalenol; p-MLKL, Phosphorylated mixed lineage 
kinase domain-like protein; p-RIP1, Phosphorylated receptor interacting protein kinase 1; p-RIP3, Phosphorylated receptor interacting protein kinase 
3; t-MLKL, Total mixed lineage kinase-like protein; t-RIP1, Total receptor interacting protein kinase 1; t-RIP3, Total receptor interacting protein kinase 3
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Fig. 6 Effects of Nec-1 on liver injury, dysfunction and inflammation in piglets after DON gavage. Piglets were given a gavage with 2 mg/kg BW 
DON or an equal volume of normal saline after intraperitoneal injection of 0.5 mg/kg BW Nec-1 or an equal volume of 5% dimethylsulfoxide 
(DMSO). Pigs were euthanized at 6 h after DON or saline gavage. A Haematoxylin/eosin-stained liver sections. (a) hepatocytes nucleolysis and (b) 
nuclear pyknosis. B Liver ultrastructure. (a) mitochondrial vacuolation, (b) mitochondrial crest fracture, (c) endoplasmic reticulum dilation and (d) 
mitochondrial membrane disruption. C–F Serum AST, ALT, AKP activities and AST/ALT ratio. G–I The mRNA expression of IL-6, IL-1β and TNF-α in liver 
of piglets. Values are means ± SE, n = 6. a–cValues without a common letter differ significantly (P < 0.05). AKP, Alkaline phosphatase; ALT, Alanine 
aminotransferase; AST, Aspartate transaminase; DON, Deoxynivalenol; IL-6, Interleukin-6; IL-1β, Interleukin-1β; TNF-α, Tumor necrosis factor-α
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serum of piglets, which suggests that acute DON gavage 
also led to liver injury. Mikami et al. [31] suggested that 
injection of DON increased apoptosis of hepatocytes and 
caused hepatotoxicity. These data showed that both DON 
chronic feed and acute oral exposures can cause liver 
injury.

Liver injury is often accompanied by inflammation 
[32]. In present experiment, we found that DON gavage 
significantly increased mRNA expression of IL-6 and IL-
1β in liver of piglets, which indicated that DON gavage 
induced liver inflammatory response. Consistently, Bar-
bouche et al. [33] reported that injection of DON for 3 h 
significantly increased mRNA expression of IL-6, IL-1β 
and TNF-α in mouse liver. However, dietary DON had 
no effect on mRNA expression of TNF-α, IL-6 and IL-
1β. The discrepancies in inflammation might be related 
to the different concentration and time period of DON 
exposure to piglets. A longer feeding time might cause 
liver inflammatory response. For example, Stanek  et al. 
[22] reported that oral gavage of DON (2.4 mg/kg BW/d) 
for 28 d triggered liver inflammation in mice. Ji et al. [34] 
found that piglets fed 3  mg/kg DON-contaminated diet 
for 24 d led to higher concentrations of IL-1β, IL-8 and 
TNF-α in liver. This was also supported by Zong et  al. 
[35] who reported that pigs fed with DON (4 mg/kg) for 
28 d had higher mRNA level of inflammatory genes in 
liver.

Liver injury is closely related to hepatocyte death 
[36]. To further investigate if DON-induced liver injury 
was accompanied by necroptosis. We examined protein 
expression of necroptosis signals including RIP1, RIP3 
and MLKL. We found that dietary DON increased pro-
tein expression of t-RIP3 and t-MLKL, and DON gav-
age also increased protein expression of t-RIP3, p-RIP3, 
t-MLKL and p-MLKL, which demonstrated that DON 
exposure activated liver necroptosis signaling path-
way. At present, there is no in  vivo study exploring the 
effect of DON on necroptosis signaling pathway in liver. 
Xiao et  al. [37]  reported that DON treatment activated 
necroptosis signaling pathway in IPEC-1 cells. Consist-
ently, Zhou et  al. [38]  also showed that DON exposure 
led to intestinal necroptosis in piglets. In our current 
study, we uncovered for the first time that DON exposure 
activated liver necroptosis signaling pathway in piglets.

To further demonstrate that DON-induced liver injury 
was partially due to the contribution of necroptosis, we 
used Nec-1, a necroptosis inhibitor, which could specifi-
cally inhibit the phosphorylation of RIP1 to block signal 
transduction of necroptosis [20, 39]. We pretreated pig-
lets with Nec-1 half an hour before DON gavage. We 
found that Nec-1 pretreatment significantly inhibited the 
increase of t-RIP3, p-RIP3, t-MLKL and p-MLKL protein 
expression induced by DON challenge. Similarity, Liu et 

al.  [40] also found that Nec-1 pretreatment before LPS 
challenge significantly reduced protein levels of t-RIP1, 
t-RIP3, t-MLKL, p-RIP1, p-RIP3 and p-MLKL in intes-
tine of piglets. Moreover, pretreatment with Nec-1 signif-
icantly attenuated the increase of AST and AKP activities 
and AST/ALT ratio in DON-challenged pigs, which indi-
cated that inhibition of necroptosis by Nec-1 attenuated 
hepatocyte damage after DON challenge. Further TEM 
analysis demonstrated that Nec-1 alleviated DON-caused 
mitochondrial vacuolation and mitochondrial crest frac-
ture. In addition, as shown by HE, Nec-1 pretreatment 
significantly alleviated DON-caused liver morphological 
injury such as decreased hepatocytes nucleolysis, nuclear 
pyknosis, and disordered arrangement of hepatocyte 
cords. Consistently, Majdi et al. [41] reported that inhibi-
tion of necroptosis signaling pathway could alleviate liver 
function damage of mice. These results suggested for the 
first time that necroptosis contributed to liver injury in 
piglets.

We finally investigated if necroptosis contributed to 
liver inflammation. We found that inhibition of necrop-
tosis by Nec-1 downregulated the mRNA expression of 
IL-6 and IL-1β in liver of piglets. In agreement with our 
findings, Zhou et al. [42] found that inhibition of necrop-
tosis signaling pathway could alleviate LPS-induced 
inflammation in hypothalamic–pituitary–adrenal axis of 
piglets. It was also reported that inhibition of necroptosis 
could attenuate intestinal inflammation after DON gav-
age in pigs [38]. These data suggested that the occurrence 
of necroptosis contributed to liver inflammation after 
DON exposure in pigs.

Conclusions
In summary, our results demonstrate for the first time 
that DON exposure activates necroptosis signaling 
pathway in liver of piglets, which is accompanied by the 
impairment of liver morphology and hepatocyte mem-
brane permeability and inflammation. Inhibition of 
necroptosis by Nec-1 ameliorates DON-induced damage 
of liver morphology and hepatocyte membrane perme-
ability and inflammation. It is suggested that necroptosis 
contributes to DON-induced liver injury and inflamma-
tion in weaned piglets.
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