Skip to main content

Impact of probiotics-derived extracellular vesicles on livestock gut barrier function

Abstract

Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.

Introduction

The majority of gut microorganisms are bacteria [1]. Probiotics are microorganisms that provide health benefits to the host when provided in sufficient numbers [2,3,4]. Common intestinal probiotics include Lactobacillus, Bifidobacterium, Streptococcus, and certain strains of Escherichia coli [5,6,7]. Intestinal probiotics play important roles in maintaining the balance of intestinal flora, promoting nutrient absorption, enhancing immunity, and alleviating constipation and diarrhea [8, 9].

Probiotics can exert their effects through biologically active nanoparticle structures released as probiotic extracellular vesicles (pEVs), which are currently a focus of emerging research. pEVs, which are nanoparticles encapsulated by phospholipid bilayers, are derived from probiotics [10,11,12]. Most of these vesicles with sizes ranging from 30 to 200 nm contain molecules such as proteins, nucleic acids [13, 14], and lipids [15]. Research revealing that Vibrio cholerae can produce extracellular vesicles was published as early as 1967 [16]. At that time, many scholars considered these vesicles to be insignificant. However, subsequent studies revealed that pEVs play a crucial structural role in bacteria [17,18,19]. Their regulatory effects on the intestinal tract extend beyond their traditional roles as bacterial by-products [20]. pEVs transport internal molecules over long distances in a concentrated, protected, and targeted manner, serving various functions such as nutrient acquisition, biofilm formation, delivery of virulence factors, and immunomodulation [18, 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]. Imbalanced production of pEVs may lead to intestinal inflammation, infections, metabolic disorders, and cancer [36,37,38]. Therefore, conducting a comprehensive analysis of the impact of pEVs on the intestinal barrier is essential for understanding the mechanisms underlying gut microbial community-host interactions. This analysis could help uncover novel functions and potential applications for probiotics and facilitate the development of new strategies to prevent and treat intestinal diseases in livestock and poultry. Ultimately, these efforts aim to enhance the economic outcomes of animal husbandry practices.

The types, formation and research history of probiotic extracellular vesicles (pEVs)

Based on Gram staining of bacterial cells, pEVs can be categorized into those derived from Gram-negative and Gram-positive bacteria [39].

Early research on pEVs primarily focused on Gram-negative bacteria, which produce pEVs that can be classified into various species. Among these, the predominant type is the outer membrane vesicles (OMVs) [40]. OMVs are globular particles formed by the blistering of the outer membrane and cannot directly enter the cytoplasmic contents [41]. The envelope of Gram-negative bacteria consists of both an outer membrane and a cytoplasmic membrane, with the periplasmic space containing a layer of peptidoglycan (PG) between the two membranes [42]. The dissociation of the outer membrane from the underlying PG is believed to play a crucial role in the biogenesis of OMVs [43]. Additionally, physical stress caused by the accumulation of peptidoglycan fragments or misfolded proteins in the periplasm may lead to the bulging of the outer membrane, which is another proposed model for the generation of OMVs [44]. Changes in the cationic concentration of LPS can also result in local negative charge accumulation and repulsion between LPS molecules, leading to local deformation of the Gram-negative cell membrane, further contributing to OMV formation [45].

OMVs can be produced by various Gram-negative bacteria, including Escherichia coli Nissle 1917 (EcN) [46] and Akkermansia muciniphila [47]. Gram-negative bacteria also produce outer inner-membrane vesicles (OIMVs), which encompass both outer and inner membranes. Pérez-Cru et al. [48] first identified double bilayered membrane vesicles (MVs) in the study of Shewanella vesiculosa M7, coining the term OIMVs for these new extracellular vesicles. Certain antibiotics, including ciprofloxacin, can stimulate the formation of OIMVs through lysis, which may represent the primary pathway for the production [49]. It has also been suggested that autolysin can weaken the peptidoglycan layer of bacteria, causing the inner membrane to protrude into the peripheral space and form OIMVs, which contain cytoplasmic contents [50]. Furthermore, recent studies have identified novel Gram-negative extracellular vesicles. The degradation of the peptidoglycan layer due to phage invasion and the enzymatic action of endolysins leads to the formation of extracellular vesicles from bacterial lysis, termed explosive outer membrane vesicles (EOMVs) [50, 51]. Compared to OMVs, OIMVs and EOMVs contain a greater amount of cytoplasmic components [33].

At first, researchers believed that the thick peptidoglycan layer in the cell wall of Gram-positive bacteria could prevent the production of pEVs [52]. However, as research progressed, it was confirmed that Gram-positive bacteria are indeed capable of producing pEVs [53]. The pEVs produced by Gram-positive bacteria are termed cytoplasmic membrane vesicles (CMVs) due to the absence of an outer membrane. Enzymes that damage peptidoglycan are thought to play a significant role in the formation of CMVs. These peptidoglycan-damaging enzymes can induce a type of cell death known as “bubbling cell death”, which weakens the peptidoglycan layer and facilitates the production of CMVs [54]. Further research is necessary to understand the biogenesis of CMVs. Currently, various Gram-positive bacteria, including Lactobacillus plantarum [55], Lacticaseibacillus rhamnosus [56], Lactobacillus johnsonii [57], Lactobacillus reuteri DSM 17938 [58], and Bacillus subtilis [59, 60], have been confirmed to produce CMVs. Stress can lead to the lysis of Gram-positive bacteria in a process called “bubbling cell death”, which results in the generation of explosive cytoplasmic membrane vesicles (ECMVs) [33]. Notably, no specific stimulation of Lactobacillus casei is required, and the spontaneous induction rate of its prophages is sufficient to produce large amounts of ECMVs under normal culture conditions [61].

Composition, extraction, and characterization of pEVs

pEVs comprise proteins, lipids, nucleic acids, and various small molecules [62]. They can be extracted using various methods, including centrifugation, ultrafiltration, commercial kits, lectin precipitation, and microfluidics [63, 64]. Their characterization can be broadly divided into two categories: physics and chemistry [65].

Composition of pEVs

The composition of pEVs is influenced by the strain [31], the surrounding environment [66, 67], and the mechanisms of their formation [68].

Proteins are important components of pEVs. They contain a variety of proteins derived from parental bacteria, including outer membrane proteins, cytoplasmic proteins, and periplasmic proteins [69]. OMVs produced by Gram-negative bacteria originate from the outer membrane, which lacks cytoplasmic contents but contains a significant amount of periplasmic proteins [70, 71]. Proteomic analysis of OMVs produced by Novosphingobium pentaromativorans US6-1 indicated that outer membrane and periplasmic proteins are the main protein components of these OMVs [72]. This study also demonstrated that the outer membrane proteins in OMVs from Novosphingobium pentaromativorans US6-1 are derived from bacterial membrane-associated protein components. OIMVs, formed by protrusions from the inner membrane into the surrounding environment, and EOMVs, resulting from the explosive cleavage of bacteria, contain cytosolic contents [15]. Currently, the characterization of protein composition in CMVs produced by Gram-positive bacteria remains incomplete. It is generally accepted that most proteins in CMVs are cytoplasmic proteins. An analysis of CMVs produced from Lactobacillus indicated that 62%–82% of the identified proteins were intracellular and non-membrane-associated [73]. However, it has also been suggested that Lactobacillus plantarum-derived CMVs are rich in membrane-associated proteins [74]. CMVs produced by Lactobacillus casei BL23 primarily contain soluble proteins, including several metabolic enzymes, as well as proteins related to translation and transcription, with many chromosome-related proteins also present [61]. Studies of ECMVs and EOMVs have identified the presence of autolysins and endolysins [15, 19, 75]. pEVs contain proteins that promote bacterial colonization in the gut, compete with other bacteria, support cell survival, and regulate host immune functions [43]. In research on Lactobacillus casei BL23, a total of 103 proteins were identified using Liquid Chromatography Mass Spectrometry (LC-MS), with 13 specific to CMVs [76]. Among these, p40, p75, and LCABL_31160 are recognized as important proteins used by probiotics to protect the intestine, and they are enriched in CMVs [76]. Proteomic analysis of OMVs generated by Escherichia coli Nissle 1917 identified 192 highly reliable specific proteins, three of which are components of the iron uptake system [77]. These specific proteins facilitate the identification of EcN in the gut and enable competition with enteric pathogens that utilize similar siderophore-iron uptake systems [77]. Furthermore, proteomic analysis of OMVs from Bacillus fragilis revealed a substantial quantity of acidic hydrolytic enzymes, enhancing the ability of Bacillus fragilis to degrade polysaccharides and other glycoconjugates [78].

The lipid composition of the membrane determines the curvature and fluidity of the membrane, which can affect the biogenesis of pEVs. Consequently, the lipid composition of pEVs may differ from that of the cell membrane [19]. pEVs contain various lipids, including glycolipids and phospholipids, as well as lipopolysaccharides (LPS) [18]. OMVs produced by Gram-negative bacteria contain phospholipids and LPS, whereas CMVs produced by Gram-positive bacteria do not. The outer leaflet of OMVs from Gram-negative bacteria is primarily composed of LPS in addition to other lipids [79]. Although the lipid composition of pEVs generally reflects that of their parent bacteria, there are notable differences [15]. LC-MS was employed to compare the lipidomics of CMVs from Lactobacillus plantarum APsulloc 331261. The results identified 320 lipid species, of which 67 showed a significant increase and 19 exhibited a decrease, revealing significant differences from the parent bacteria [80]. Notably, lysophosphatidylserine (18:4) and phosphatidylcholine (32:2) were more than 21-fold enriched in CMVs [80]. Metabolomic analysis of CMVs produced by Lactiplantibacillus plantarum detected eicosatetraenoyl-glycerophosphate and various fatty acids that constitute the cytoplasmic membrane of bacteria, supporting the hypothesis that CMVs are derived from the cytoplasmic membrane of bacteria [81].

OMVs produced by Gram-negative bacteria were previously thought to contain DNA [82]. However, following the confirmation of OIMVs, it was proposed that most of the DNA resides within OIMVs rather than in OMVs [19]. At the same time, electron microscopy of OMVs (EOMVs) was shown to carry more DNA [19]. Therefore, it has been suggested that the presence of DNA in OMVs may result from contamination by OIMVs and EOMVs within the samples [19]. CMVs produced by Gram-positive bacteria also contain DNA [19]. RNA is generally viewed as a typical cytosolic component present in CMVs and EOMVs [19]. Biochemical analysis of CMVs derived from Lactobacillus reuteri indicated the presence of DNA, RNA, and protein [83]. When CMVs generated by Lactobacillus reuteri were treated with RNase, the results showed that RNase treatment had little effect on the amount of RNA content, the results showed that RNase treatment had little effect on the RNA content, indicating that the RNA was encapsulated within the CMVs [81].

pEVs contain a variety of small molecules, such as hydrophobic molecules, metabolites, and phages. Metabolomic analyses of pEVs have demonstrated that they contain specific metabolites that are selectively packaged, with composition depending on the bacterial source [84]. The metabolite content of individual strains of Bacteroides thetaiotaomicron is closely linked to their survivability, with the utilization of these metabolites enhancing bacterial survival in their ecological niches [85]. Additionally, these pEVs contain hydrophobic group-sensing molecules that modulate communication between bacteria [86]. The composition of pEVs is illustrated in Fig. 1.

Fig. 1
figure 1

Composition of probiotic extracellular vesicles (pEVs) from Gram-negative and Gram-positive bacteria. pEVs contain proteins, nucleic acids, lipids, and various small molecules

Extraction of pEVs

Ultracentrifugation is an effective method for extracting pEVs. It can be further categorized into differential ultracentrifugation and density gradient centrifugation. Differential ultracentrifugation allows for separation based on the density, size, and shape of particulate components in suspensions [87]. After precipitating larger and denser cellular debris and particles, the supernatant is further purified and centrifuged again to precipitate and wash the pEVs [87]. Density gradient centrifugation is another separation method that relies on size and density [88]. In this technique, a density gradient is created using a substance such as sucrose in a centrifuge tube [89]. The sample is then added to the top of the gradient, and centrifugal force is applied [90]. The particles in the sample increase in density at a distinct rate from the top to the bottom of the gradient, leading to their separation. Finally, the pEVs are collected through gradient-based collection [89].

Ultrafiltration is also one of the most common techniques used to extract pEVs [88]. Similar to conventional membrane filtration, the separation of suspended particles primarily depends on their size or molecular weight [91]. The filter retains particles larger than the molecular weight cutoff of the filter used, while smaller particles can pass through [91]. If pEVs are retained in the filter unit, they cannot be utilized for downstream analysis [92]. Residual contamination can be minimized by employing sequential filtration, using filters that range from larger to smaller pore sizes. Ultrafiltration is more convenient than ultracentrifugation and does not require specialized instrumentation [93]. However, shear forces during ultrafiltration may risk damaging the pEVs. This issue can be addressed by monitoring and regulating the transmembrane pressure [94].

Effective separation of pEVs can be achieved by altering their solubility or dissolution, prompting them to precipitate from biofluids. This process can be performed using water-free polymers like polyethylene glycol (PEG), which bind water molecules, allowing pEVs to precipitate through centrifugation [95]. This separation method is simpler and applicable to a wide range of starting volumes. However, it lacks selectivity, as it leads to the precipitation of both pEVs and other substances, such as extracellular proteins [94]. Typically, sample pretreatment, such as filtration, should be conducted before separation to ensure the purity of the precipitate when employing this method. Agglutinin can effectively replace PEG, as it specifically binds to carbohydrates on the particles, altering the solubility of pEVs and facilitating their precipitation and separation [96]. Additionally, ultracentrifugation pretreatment should be performed prior to precipitation to remove cell fragments and other carbohydrate-containing components [97].

Microfluidic-based separation of pEVs offers solutions to the challenges associated with traditional methods. By utilizing microfluidics, pEVs can be separated based on both physical and biochemical properties, offering advantages such as high efficiency and low initial volume requirements [98]. Continuous advancements in separation mechanisms now allow for the separation of pEVs based on their acoustic, electrophoretic, and electromagnetic properties. One notable microfluidic separation technique is the use of acoustic nanofilters [99]. In this method, a matrix containing pEVs and other extracellular components is injected into a chamber exposed to ultrasound, which exerts radiative forces on the particles. Particles of varying sizes and densities respond differently to these forces, with larger particles experiencing stronger radiative forces and migrating more rapidly toward the pressure nodes [99]. Ultrasound-based separation can accommodate particles across a wide range of sizes [99]. While this method is still in development, it shows great promise for future applications.

Despite the existence of various methods for separating pEVs, differential ultracentrifugation remains the gold standard. This technique effectively separates larger and denser particles based on density, size, and shape, making it particularly suitable for efficient separation [94].

Characterization of pEVs

In the early stages of research, the characterization of pEVs primarily focused on protein concentration [62, 94]. However, different subtypes of pEVs may exhibit varying protein profiles, and the protein concentration in isolated pEVs is often overestimated [94]. As research methods for pEV characterization have advanced, the analysis techniques have also been updated and refined. These methods can now be categorized into physical and chemical analysis techniques [100]. Physical analysis of pEV size and concentration predominantly include nanoparticle tracking analysis (NTA) [101], dynamic light scattering (DLS) [102], electron microscopy [103], and tunable resistance pulse sensing (tRPS) [104]. Chemical analyses of the composition of pEV contents mainly involve staining methods [105], immunoblotting [106], and proteomics [107].

NTA utilizes the principles of light scattering and Brownian motion to assess the size and concentration of pEVs [108]. The behavior of particles like pEVs is influenced by the surrounding molecules, leading them to exhibit irregular Brownian motion. In this technique, laser light is directed onto the sample, and the trajectory of the Brownian motion is observed using an optical microscope. The NTA software estimates the sizes and concentrations of the particles based on their motion [109]. Dynamic light scattering (DLS) operates similarly to NTA but relies on fluctuations in the intensity of scattered light to determine particle size [110]. DLS typically requires a very small sample, necessitating less extensive parameter optimization [102]. However, because detecting scattered light from small particles can be challenging, DLS often skews data towards larger particle sizes when analyzing non-homogeneous mixtures [102, 111]. Electron microscopy provides a means to directly observe the morphology of pEVs. This method employs an electron beam to generate high-resolution images of submicron particles and is commonly performed using both transmission electron microscopy (TEM) and scanning electron microscopy (SEM) [112]. The primary distinction between these two methods lies in their electron detection techniques [112]. Tunable resistance pulse sensing (tRPS) employs a non-conducting nanomembrane to partition a fluid cell into two sections: a suspension and a particle-free electrolyte [113]. When an electrical potential is applied to move the particles across the nanomembrane, the current between the sections is interrupted, resulting in a resistive pulse [114]. The duration of this resistive pulse is correlated the size of the particles [114].

Immunodetection methods are used for visualizing labeled proteins and identifying target proteins to assess the purity of isolated pEVs. Flow cytometry can be employed for the immunophenotyping of pEVs [115]. Additionally, various proteins within pEVs can be isolated using Western blotting; after transfer, these proteins are incubated with antibodies specific to the target protein before detection [94]. However, this approach does not facilitate the observation of intact vesicles [116].

Currently, differential centrifugation is commonly employed technique for extracting pEVs, while methods such as NTA, TEM, and biochemical analyses are utilized to study their size, concentration, and composition [103, 117], as illustrated in Fig. 2.

Fig. 2
figure 2

Isolation and characterization of pEVs. The pEVs in the solution are separated using differential centrifugation, rinsed with PBS, and then analyzed using NTA, transmission electron microscopy, and biochemical assays

Significance of in-depth study of pEVs in livestock and poultry production

Currently, many diseases affecting livestock and poultry are linked to microorganisms [118]. Among them, piglet diarrhea is primarily caused by disruptions in intestinal flora and compromised intestinal barriers [119]. Early weaned piglets are particularly susceptible to enterotoxigenic E. coli (ETEC) infections, which result in diarrhea and account for the deaths of up to 50% of piglets worldwide each year [119]. During breeding, antibiotics are often employed to treat diseases caused by microorganisms; however, the extensive use of antibiotics has led to the emergence of antibiotic resistance in livestock and poultry. This scenario poses significant challenges to the sustainable development of the breeding industry and human health [120,121,122]. Probiotics present an effective alternative to antibiotics by reshaping intestinal flora, alleviating and treating livestock and poultry diseases, and circumventing antibiotic resistance and contamination [123]. For instance, Bacillus licheniformis has been shown to reduce the incidence of diarrhea and decrease the relative abundance of intestinal E. coli [124]. Similarly, Bifidobacterium lactis and Lactobacillus rhamnosus inhibit the adhesion of pathogens such as Salmonella, Clostridium, and E. coli to porcine intestinal mucus [125]. Probiotics are generally involved in their interactions with the host by secreting bioactive substances, thus enhancing the integrity of the intestinal epithelial barrier [11]. Studies conducted over the past decade indicate that the health-promoting effects of probiotics are largely dependent on the production of pEVs [10]. Therefore, an in-depth exploration of the significance and mechanisms of pEVs in livestock and poultry breeding can further enhance the beneficial roles of probiotics, ultimately promoting the sustainable and healthy development of animal husbandry.

Effects of pEVs on the intestinal barrier and potential mechanisms

The intestinal barrier consists of biological, immune, chemical, and physical components, all of which contribute to its integrity-crucial for livestock physiology and homeostasis [126, 127]. An intact intestinal epithelial barrier effectively prevents luminal microorganisms and antigens from entering the bloodstream [128, 129]. Disruption of the self-renewal function of intestinal epithelial cells (IECs) can lead to intestinal barrier dysfunction, resulting in increased intestinal permeability [130]. This heightened permeability allows direct contact between host cells and intestinal luminal contents, including commensal bacteria and foreign pathogens [129, 130]. Consequently, this interaction triggers intestinal mucosal immune responses, potentially leading to inflammation, allergies, and metabolic diseases in livestock and poultry [129]. Conversely, the intestinal epithelial barrier can hinder effective communication between probiotics and the host [131]. To address this, probiotics regulate host functions by secreting bioactive substances, such as pEVs [131]. Researchers have conducted in-depth studies on this phenomenon, demonstrating that pEVs can enter host cells, including immune and IECs, through endocytosis to exert their effects [11, 132]. The specific impacts of pEVs on each type of barrier and the potential mechanisms involved are detailed below.

Intestinal biological barrier

Reduced intestinal barrier function is primarily manifested by alterations in the composition or abundance of microorganisms colonizing the gut, resulting in dysbiosis characterized by an unbalanced intestinal microbiota, decreased microbial diversity, and an increased presence of pathogenic bacteria [133]. These changes lead to a decline in intestinal function and may trigger various intestinal diseases [133]. In piglets, intestinal dysbiosis is predominantly reflected in the altered structure of the bacterial community, marked by a deficiency of Lactobacillus and an excess of E. coli [119, 134, 135]. pEVs can support the growth and colonization of beneficial microorganisms, thereby aiding livestock and poultry in establishing a balanced intestinal microbiota [20]. pEVs contain adhesion factors that promote the colonization of intestinal probiotics and harbor polysaccharide-degrading enzymes [136]. These enzymes can break complex polysaccharides to produce short-chain carbohydrates or can break complex polysaccharides to produce monosaccharides, providing nutrients for the intestinal probiotics [136]. Analysis of biomolecular interactions has demonstrated that pEVs contain numerous cytoplasmic proteins that bind to porcine gastric mucins, such as elongation factor Tu, phosphoglycerate kinase, and heat shock proteins. Consequently, pEVs enhance the colonization of probiotics by transporting bacterial adhesion factors to the extracellular environment [137]. Furthermore, Akkermansia muciniphila-derived pEVs selectively promote the colonization of beneficial bacteria through membrane fusion, thereby maintaining a balanced intestinal microbiota [20].

pEVs derived from Lactobacillus rhamnosus GG have been shown to restore deficits in alpha and beta diversity induced by dextran sulfate sodium salt [138]. Similarly, pEVs produced by L. plantarum Q7 alleviated inflammation by modulating the intestinal microbiota in a mouse model of DSS-induced colitis, increasing the abundance of Akkermansia, Bifidobacteria, Muribaculaceae, and Lactobacillus, while decreasing that of Proteobacteria, Deferribacteria, and Epsilonbacteraeota [139]. Additionally, the pEVs of Bifidobacterium contain mucin-binding proteins that facilitate their colonization of the intestinal mucosa [137]. For instance, B. ovatus-derived pEVs carry inulin-degrading enzymes that hydrolyze inulin, generating nutrients that facilitate the growth of Bacteroides species unable to metabolize inulin [25]. Moreover, pEVs can transfer antimicrobials to competing pathogenic bacteria, causing structural damage, dysfunction, and cell death, ultimately leading to the elimination of these competing bacteria [44]. pEVs derived from L. rhamnosus GG exhibit bactericidal effects against various pathogens, including Pseudomonas, Salmonella, Clostridium, and E. coli B-44 [140]. Proteomic analysis of pEVs has revealed a significant enrichment in bacteriocins [73]. These bacteriocins can be utilized by pEVs to eliminate competing bacteria while also protecting themselves from proteases and inactivating molecules present in the gut [15, 73]. Bacteriocins have the capability to inhibit or kill several harmful bacteria, including Staphylococcus aureus, L. monocytogenes, and P. aeruginosa [141].

Antibiotics and host defense peptides (HDPs) present considerable threats to the survival of gut bacteria within the host [142]. pEVs can interact with antibiotics and HDPs to reduce their concentrations, thereby safeguarding sensitive bacterial strains. For example, pEVs can bind to membrane-targeted antibiotics such as polymyxins and daptomycin [44]. Bacteroides-derived pEVs possess β-lactamases that hydrolyze β-lactam antibiotics, enhancing the survival of intestinal commensal bacteria [143]. Additionally, pEVs derived from L. plantarum have been shown to maintain intestinal homeostasis in vitro by increasing the expression of antimicrobial peptides, such as histone B and RegIIIγ, in the colonic epithelial cell line Caco-2 [74].

Intestinal immune barrier

pEVs are key components in immune signaling [144]. Studies have demonstrated that pEVs influence various immune signaling pathways, including the intracellular nucleotide oligomerization domain 1 (NOD1), NF-κB, TLR2, ERK, and NLRP3 pathways, as well as the secretion of immune cytokines. These pathways enhance the immune function of the intestinal tract in animals, helping to prevent intestinal inflammation [57, 83, 144,145,146,147,148,149,150]. Peptidoglycan in pEVs can activate NOD1 receptors in IECs, thereby enhancing innate intestinal immunity [145]. pEVs derived from E. coli Nissle 1917 (EcN) specifically act on the NOD1 signaling pathway to improve intestinal function, positively influencing intestinal homeostasis [145, 146]. DSS can upregulate the expression of TLR4 and MyD88 genes, as well as the p65 and p-p65 proteins in the NF-κB signaling pathway, leading to increased expression of the Nod-like receptor family in the NLRP3 signaling pathway and promoting pro-inflammatory factor expression [138]. Furthermore, pEVs from L. rhamnosus and L. kefiri exhibit anti-inflammatory effects by suppressing the overexpression of TNF-α, IL-1β, IL-6, and IL-2 in DSS-treated intestinal tracts, primarily through the inhibition of the NF-κB signaling pathway [138, 147]. The pEVs from Propionibacterium freudenreichii CIRM-BIA 129 rely on surface layer proteins (SlpB) to interact with NF-κB and inhibit IL-8 secretion [148]. Additionally, pEVs from L. murinus reduce the overexpression of pro-inflammatory factors in the intestine by enhancing the expression of TLR2 [149]. pEVs from L. john improve the host’s intestinal barrier function by inhibiting extracellular signal-regulated kinase (ERK) expression, promoting M2 macrophage polarization, and obstructing pathways such as NLRP3 [57]. In vitro studies indicate that pEVs derived from L. reuteri and L. paracasei inhibit the expression of pro-inflammatory factors while promoting anti-inflammatory factors like IL-10 and TGF-β, thereby alleviating intestinal inflammation [83, 150]. Furthermore, pEVs of L. paracasei have been shown to inhibit the activation of inflammatory cell lines such as Caco-2, iNOS, NF-κB, and NO within signaling pathways, effectively suppressing the LPS-induced inflammatory response in human colonic adenocarcinoma HT-29 cells [150]. The anti-inflammatory effects of L. paracasei-derived pEVs were diminished when endoplasmic reticulum stress inhibitors were introduced, indicating their relevance to endoplasmic reticulum stress [150]. In conclusion, pEVs modulate immune signaling pathways, regulate the secretion of anti-inflammatory and pro-inflammatory factors, and significantly influence intestinal immune function.

It has been demonstrated that pEVs can activate immune cells such as macrophages, intestinal regulatory T cells (Tregs), dendritic cells, and neutrophils [15, 83, 132, 151,152,153,154,155,156,157]. This activation occurs through two main mechanisms. First, pEVs carry microbe-associated molecular pattern (MAMP) molecules that can be recognized by specific pattern recognition receptors expressed by host epithelial and immune cells [44, 158]. Upon internalization by IECs, pEVs activate the cytoplasmic receptor NOD1 [15]. This activation triggers the secretion of immune effector factors, leading to the production of multiple cytokines and co-stimulatory molecules. This process is classified as indirect activation [15]. Second, pEVs can penetrate the epithelial barrier to reach the small intestinal mucosa, where they activate intestinal immune cells [15]. Intestinal macrophages serve as central immunoregulatory cells in the intestine [159]. They sense various signals in the intestinal environment, leading to changes in their phenotype and function, which enable them to perform corresponding immune functions [160]. Macrophages are also crucial participants in the intestinal inflammatory response, producing both pro-inflammatory and anti-inflammatory cytokines [161]. Furthermore, pEVs can be taken up by macrophages, exerting an anti-inflammatory effect [151]. By modulating immune plasticity through macrophages, pEVs play a role in maintaining the integrity of the intestinal barrier [151]. For example, pEVs produced by Pediococcus pentosaceus effectively alleviated DSS-induced acute colitis by activating TLR2 and promoting the polar differentiation of macrophages into M2-like macrophages [152]. Additionally, researchers treated macrophages with pEVs from L. reuteri and then co-cultured them with splenic lymphocytes. This resulted in a downregulation of IFN-γ and IL-17 expression in the splenic lymphocytes, effectively inhibiting their pro-inflammatory response, while the expression of CD25, CTLA-4, and LAG-3 was upregulated [83]. Therefore, CD4+CD25+ cells may also be involved in the immunomodulatory effects mediated by L. reuteri-derived pEVs [83]. Certain pEVs exhibit Treg-inducing effects as well. For instance, pEVs released by Bacteroides fragilis deliver polysaccharides that are taken up by dendritic cells (DCs) upon entry into the body. This interaction with TLR2 helps prevent intestinal inflammation [132, 153]. These polysaccharides also promote the production of Tregs and anti-inflammatory cytokines, which assist in regulating the immune response [132]. pEVs derived from L. rhamnosus and Bifidobacterium enhance the development of Tregs and tolerance-promoting dendritic cells by interacting with the C-type lectin receptor and TLR on DCs [154, 155]. Similarly, pEVs from B. vulgatus promote DC hemiactivation and enhance immune system silencing, thereby attenuating colitis in the host [156]. Moreover, pEVs from Escherichia coli Nissle (EcN) and B. thetaiotaomicron can help resist pathogenic infections in the gut by activating DCs to initiate a Th1-type response [153, 157]. Finally, pEVs regulate neutrophils in a dose-dependent manner, impacting memory-like inflammatory responses [162]. Studies have shown that fecal-derived pEVs directly mediate adaptive immune responses [163]. A low dose of pEVs (1 ng/mL) significantly enhanced pro-inflammatory sensitivity in neutrophils, while higher doses resulted in diminished responses to LPS stimulation [163]. In summary, pEVs modulate intestinal barrier function by affecting intestinal macrophages, Tregs, dendritic cells, and neutrophils.

Intestinal chemical barrier

The intestinal chemical barrier consists of mucus, digestive juices, antimicrobial peptides (AMPs), and other antimicrobial substances secreted by the intestinal mucosal epithelium [164, 165]. This barrier separates intestinal bacteria from the intestinal epithelium and influences their survival capacity [33]. Several studies have shown that pEVs positively affect the function of the chemical barrier, enhancing the ability of probiotics to survive [20, 74]. The mucus on the surface of the intestinal epithelium serves as the gut’s primary defense against intestinal microbiota and pathogenic bacteria [165]. Goblet cells, predominantly found in the colon of livestock and poultry, are the main epithelial cells responsible for secreting mucus in the intestines [166]. Accumulating evidence suggests that processes regulating intestinal epithelial fluid absorption and secretion, closely related to intestinal health, can be influenced by several pEVs [20]. For instance, the internalization of A. muciniphila-derived pEVs leads to a significant increase in the number of Goblet cells and stimulates mucus production, resulting in a thicker mucus layer in the intestinal lumen that offers resistance to pathogenic bacteria [20]. Antimicrobial peptides secreted by epithelial and Paneth cells can help prevent bacteria from penetrating the internal mucus layer [167]. Furthermore, pEVs can induce the expression of intestinal AMPs, enhancing the chemical barrier. Studies have shown that Lactobacillus-derived pEVs promote the expression of the AMP REG3G. As a C-type lectin, REG3G enhances the capacity of the intestinal chemical barrier [74]. Clearly, pEVs stimulate enterocytes, leading to increased AMP and mucus production, and contribute to the enhanced impenetrability of the intestinal chemical barrier [74].

Intestinal physical barrier

Intestinal epithelial cells and the connectivity complex, which includes tight junctions (TJs), adherens junctions, gap junctions, and desmosomes, form the intestinal physical barrier [168,169,170]. IECs are closely linked to adjacent cells through cell-cell junctions, which effectively prevent bacterial invasion [171]. They can sense microbial signals through PRRs [171]. Upon activation, IECs enhance the intestinal barrier, thereby protecting host tissues [171]. Tight junctions are highly complex macromolecular protein structures located in the apical region of the junctional complexes, overlaying the polarized epithelium. TJs are formed by transmembrane proteins such as occludin, claudin, and tricellulin, as well as adhesion molecules that establish intercellular connections [172]. pEVs can influence intestinal health by acting directly on the IECs or by regulating the formation of TJs between neighboring IECs [131, 146, 173,174,175,176,177,178,179]. Bacteroides-derived pEVs contain human keratinocyte growth factor 2 (KGF2), which aids in the repair of IECs in animals with colitis [173]. pEVs derived from L. reuteri DSM 17938 and BG-R46L can attenuate leakage induced by enterococcal-producing E. coli after being taken up by IECs [174]. Additionally, pEVs released by A. muciniphila can directly reduce intestinal permeability by penetrating IECs and promoting the expression of TJ proteins [175]. These pEVs act on AMP-activated protein kinase (AMPK) to upregulate the animal’s TJ closure proteins, including ZO-1, occludin-1, and claudins-1 [175]. Furthermore, EcN-derived pEVs have been shown to upregulate ZO-1 and claudin-14 while downregulating claudin-2 in IECs via tcpC [176, 177]. This process enhances the TJs between IECs [178], promotes goblet cell activity by stimulating IL-22 expression, and activates Trefoil Factor 3 (TFF-3) in cup cells [131]. Additionally, this mechanism increases the expression of antimicrobial factors such as β-defensin-2 and positively regulates the intestinal epithelial barrier by downregulating the expression of matrix metalloproteinase-9 (MMP-9), which disrupts the TJ [146, 179]. Evidently, pEVs play a crucial role in regulating IECs and TJs, thereby contributing to the reinforcement of the intestinal physical barrier.

Interaction between pEVs and various parts of the intestinal barrier

There is an inter-regulatory effect among the various components of the intestinal barrier, as well as a regulatory influence of pEVs on these barriers [180]. Macrophages and IECs are interdependent and can interact with one another [180]. Recent studies have shown that pEVs secreted by Lactobacillus mucosae counteract colitis-induced damage to the intestinal physical barrier by modulating macrophage phenotypes [151]. Specifically, they promote M2-type macrophage polarization, inhibit M1-type macrophage polarization, and suppress the expression of inflammatory regulatory proteins such as NF-κB and AKT [151]. Additionally, pEVs can regulate the innate immunity of IECs by interacting with Toll-like receptor 2 (TLR2), which plays a crucial role in recognizing and signaling innate immune cells in response to molecular patterns associated with bacterial pathogens [149]. L. murinus-derived pEVs mitigate deoxynivalenol-induced intestinal barrier disruption by activating TLR2, thereby promoting the conversion of anti-inflammatory macrophages to the α-smooth muscle actin phenotype [149]. This process decreases levels of pro-inflammatory cytokines (such as IL-1β and TNF-α), increases the secretion of anti-inflammatory cytokines, and enhances the expression of TJ proteins [149]. Evidently, pEVs play a vital role in maintaining intestinal homeostasis by enhancing the interaction between the immune barrier (macrophages) and the physical barrier (IECs). Overall, pEVs contribute to the regulation of all intestinal barriers through a unique approach. An interactive regulatory effect exists among these barriers, as illustrated in Fig. 3. Consequently, the role of pEVs in the intestinal health of livestock and poultry is significant and cannot be overlooked.

Fig. 3
figure 3

An illustration of the mechanisms through which pEVs influence various intestinal barriers. A A general overview of the effects of pEVs on the intestinal barrier. B Regulation of the biological barrier of the intestine by pEVs. C Effects of pEVs on the chemical barriers. D Modulation of the physical barriers by pEVs. E pEVs’ influence on the immune barrier. F pEVs promote interactions between the intestinal immune and physical barriers

Conclusions and perspectives

The study of pEVs has advanced significantly. This overview highlights the composition, extraction, and characterization of pEVs, with a focus on the potential mechanisms by which pEVs influence various intestinal barriers. Understanding these mechanisms is essential for gaining insights into how pEVs contribute to maintaining the intestinal health of livestock and poultry, thereby enhancing their growth efficiency and immune responses. This knowledge has profound implications for the sustainable development of the livestock industry and improved animal welfare. While some mechanisms of pEVs’ action on intestinal barriers have been identified, others remain to be explored. Most current research has examined pEVs in their entirety when investigating their role in regulating intestinal barrier function, leaving the specific components and the associated mechanisms still unclear. There is an urgent need to identify these components to provide a theoretical basis for the effective utilization of pEVs. Future practical applications of pEVs to enhance the intestinal health of livestock and poultry must address the challenges of increasing pEV production and maintaining their long-term efficacy. In conclusion, there is still much to learn about pEVs, their mechanisms of action, and their potential applications in animal production.

Abbreviations

AMP:

Antimicrobial peptide

DLS:

Dynamic light scattering

IECs:

Intestinal epithelial cells

KGF2:

Keratinocyte growth factor 2

MAMPs:

Microbe-associated molecular patterns

NOD 1:

Nucleotide oligomerization domain 1

NTA:

Nanoparticle tracking analysis

pEVs:

Probiotic extracellular vesicles

PEG:

Polyethylene glycol

PRR:

Pattern recognition receptor

TJ:

Tight junction

tRPS:

Tunable resistance pulse sensing

References

  1. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. https://doiorg.publicaciones.saludcastillayleon.es/10.1136/bmj.k2179.

    Article  PubMed  Google Scholar 

  2. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv Nutr. 2019;10(suppl1):S49-66. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/advances/nmy063.

    Article  PubMed  Google Scholar 

  3. Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, et al. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol. 2023;14:1216674. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2023.1216674.

    Article  PubMed  Google Scholar 

  4. Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther. 2022;231:107978. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pharmthera.2021.107978.

    Article  CAS  PubMed  Google Scholar 

  5. Abdelhamid AG, El-Masry SS, El-Dougdoug NK. Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J. 2019;10(4):337–50. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s13167-019-00184-z.

  6. Gupta V, Garg R. Probiotics. Indian J Med Microbiol. 2009;27(3):202–9. https://doiorg.publicaciones.saludcastillayleon.es/10.4103/0255-0857.53201.

    Article  CAS  PubMed  Google Scholar 

  7. Ji J, Jin W, Liu SJ, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm. 2023;4(6):e420. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/mco2.420.

    Article  PubMed  Google Scholar 

  8. Shen X, Xie A, Li Z, Jiang C, Wu J, Li M, et al. Research progress for probiotics regulating intestinal flora to improve functional dyspepsia: a review. Foods. 2024;13(1):151. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/foods13010151.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Zhang P, Zhang X. Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules. 2021;26:19. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/molecules26196076.

    Article  CAS  Google Scholar 

  10. Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular vesicles of probiotics: shedding light on the biological activity and future applications. Pharmaceutics. 2023;15(2):522. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pharmaceutics15020522.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact. 2020;19(1):23. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12934-020-1289-4.

    Article  CAS  PubMed  Google Scholar 

  12. Gurunathan S, Kim JH. Bacterial extracellular vesicles: emerging nanoplatforms for biomedical applications. Microb Pathog. 2023;183:106308. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.micpath.2023.106308.

    Article  CAS  PubMed  Google Scholar 

  13. Lee YJ, Shin KJ, Chae YC. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med. 2024;56(4):877–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s12276-024-01209-y.

    Article  CAS  PubMed  Google Scholar 

  14. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2019.02.029.

  15. Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: vital contributors to physiology from bacteria to host. Microbiol Res. 2024;284:127733. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.micres.2024.127733.

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee SN, Das J. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol. 1967;49(1):1–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1099/00221287-49-1-1.

    Article  CAS  PubMed  Google Scholar 

  17. McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J. 2021;40(21):e108174. https://doiorg.publicaciones.saludcastillayleon.es/10.15252/embj.2021108174.

    Article  CAS  PubMed  Google Scholar 

  18. Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Bacterial extracellular vesicles: modulation of biofilm and virulence properties. Acta Biomater. 2024;178:13–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2024.02.029.

    Article  CAS  PubMed  Google Scholar 

  19. Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol. 2023;21(7):415–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41579-023-00875-5.

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Lin S, Wang L, Cao Z, Zhang M, Zhang Y, et al. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. Sci Adv. 2023;9(11):eade5079. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/sciadv.ade5079.

    Article  CAS  PubMed  Google Scholar 

  21. Xie J, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol. 2023;31(12):1206–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.tim.2023.05.010.

    Article  CAS  PubMed  Google Scholar 

  22. Horstman AL, Kuehn MJ. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem. 2000;275(17):12489–96. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.275.17.12489.

  23. Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 2004;23(23):4538–49. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/sj.emboj.7600471.

  24. Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell. 2003;115(1):25–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0092-8674(03)00754-2.

    Article  CAS  PubMed  Google Scholar 

  25. Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol. 2014;24(1):40–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cub.2013.10.077.

    Article  CAS  PubMed  Google Scholar 

  26. Dürwald A, Zühlke MK, Schlüter R, Gebbe R, Bartosik D, Unfried F, et al. Reaching out in anticipation: bacterial membrane extensions represent a permanent investment in polysaccharide sensing and utilization. Environ Microbiol. 2021;23(6):3149–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/1462-2920.15537.

    Article  CAS  PubMed  Google Scholar 

  27. Faddetta T, Renzone G, Vassallo A, Rimini E, Nasillo G, Buscarino G, et al. Streptomyces coelicolor vesicles: many molecules to be delivered. Appl Environ Microbiol. 2022;88(1):e0188121. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/aem.01881-21.

    Article  CAS  PubMed  Google Scholar 

  28. Bielaszewska M, Marejková M, Bauwens A, Kunsmann-Prokscha L, Mellmann A, Karch H. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB. Int J Med Microbiol. 2018;308(7):882–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijmm.2018.06.004.

  29. Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest. 2011;121(4):1471–83. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/jci44261.

    Article  PubMed  Google Scholar 

  30. Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles. 2021;10(6):e12080. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jev2.12080.

  31. Hendrix A, De Wever O. Systemically circulating bacterial extracellular vesicles: origin, fate, and function. Trends Microbiol. 2022;30(3):213–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.tim.2021.12.012.

    Article  CAS  PubMed  Google Scholar 

  32. Jayathilaka E, Dias M, Nikapitiya C, De Zoysa M. Immunomodulatory responses of extracellular vesicles released by Gram-positive fish pathogen Streptococcus parauberis. Fish Shellfish Immunol. 2024;148:109508. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.fsi.2024.109508.

  33. Sun D, Chen P, Xi Y, Sheng J. From trash to treasure: the role of bacterial extracellular vesicles in gut health and disease. Front Immunol. 2023;14:1274295. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2023.1274295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caruana JC, Walper SA. Bacterial membrane vesicles as mediators of microbe - microbe and microbe - host community interactions. Front Microbiol. 2020;11:432. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2020.00432.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Saad MG, Beyenal H, Dong WJ. Dual roles of the conditional extracellular vesicles derived from Pseudomonas aeruginosa biofilms: promoting and inhibiting bacterial biofilm growth. Biofilm. 2024;7:100183. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bioflm.2024.100183.

  36. Villageliu DN, Samuelson DR. The role of bacterial membrane vesicles in human health and disease. Front Microbiol. 2022;13:828704. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2022.828704.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One. 2011;6(2):e17027. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0017027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, et al. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One. 2011;6(11):e27958. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0027958.

  39. Pantanowitz L, Leiman G, Garcia LS. Microbiology, cytopathology of infectious diseases. 2011;17:37–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/978-1-4614-0242-8_4. eCollection 2012.

  40. Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, et al. Urinary extracellular vesicles: a position paper by the urine task force of the international society for extracellular vesicles. J Extracell Vesicles. 2021;10(7): e12093. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jev2.12093.

    Article  PubMed  Google Scholar 

  41. Jan AT. Outer membrane vesicles (OMVs) of Gram-negative bacteria: a perspective update. Front Microbiol. 2017;8:1053. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2017.01053.

    Article  PubMed  Google Scholar 

  42. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2(5):a000414. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/cshperspect.a000414.

    Article  CAS  PubMed  Google Scholar 

  43. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605–19. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrmicro3525.

    Article  CAS  PubMed  Google Scholar 

  44. Díaz-Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles. 2021;10(13):e12161. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jev2.12161.

    Article  PubMed  Google Scholar 

  45. Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol. 1995;177(14):3998–4008. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/jb.177.14.3998-4008.1995.

    Article  CAS  PubMed  Google Scholar 

  46. Li N, Wu M, Wang L, Tang M, Xin H, Deng K. Efficient isolation of outer membrane vesicles (OMVs) secreted by Gram-negative bacteria via a novel gradient filtration method. Membranes (Basel). 2024;14(6):135. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/membranes14060135.

  47. Kim JY, Kim CW, Oh SY, Jang S, Yetunde OZ, Kim BA, et al. Akkermansia muciniphila extracellular vesicles have a protective effect against hypertension. Hypertens Res. 2024;47:1642–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41440-024-01627-5.

  48. Pérez-Cruz C, Carrión O, Delgado L, Martinez G, López-Iglesias C, Mercade E. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl Environ Microbiol. 2013;79(6):1874–81. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/aem.03657-12.

  49. Devos S, Van Putte W, Vitse J, Van Driessche G, Stremersch S, Van Den Broek W, et al. Membrane vesicle secretion and prophage induction in multidrug-resistant Stenotrophomonas maltophilia in response to ciprofloxacin stress. Environ Microbiol. 2017;19(10):3930–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/1462-2920.13793.

  50. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41579-018-0112-2.

    Article  CAS  PubMed  Google Scholar 

  51. Baeza N, Delgado L, Comas J, Mercade E. Phage-mediated explosive cell lysis induces the formation of a different type of O-IMV in Shewanella vesiculosa M7T. Front Microbiol. 2021;12:713669. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2021.713669.

  52. Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev. 2019;43(3):273–303. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/femsre/fuy042.

    Article  CAS  PubMed  Google Scholar 

  53. Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrmicro3480.

    Article  CAS  PubMed  Google Scholar 

  54. Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact Mater. 2022;14:169–81. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bioactmat.2021.12.006.

    Article  CAS  PubMed  Google Scholar 

  55. Chen Q, Fang Z, Yang Z, Xv X, Yang M, Hou H, et al. Lactobacillus plantarum-derived extracellular vesicles modulate macrophage polarization and gut homeostasis for alleviating ulcerative colitis. J Agric Food Chem. 2024;72(26):14713–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/acs.jafc.4c01758.

  56. Leser T, Baker A. Molecular mechanisms of Lacticaseibacillus rhamnosus, LGG® probiotic function. Microorganisms. 2024;12(4):794. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/microorganisms12040794.

  57. Tao S, Fan J, Li J, Wu Z, Yao Y, Wang Z, et al. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J Adv Res. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jare.2024.03.011.

  58. Grande R, Celia C, Mincione G, Stringaro A, Di Marzio L, Colone M, et al. Detection and physicochemical characterization of membrane vesicles (MVs) of Lactobacillus reuteri DSM 17938. Front Microbiol. 2017;8:1040. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2017.01040.

  59. Brown L, Kessler A, Cabezas-Sanchez P, Luque-Garcia JL, Casadevall A. Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin. Mol Microbiol. 2014;93(1):183–98. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/mmi.12650.

  60. Vicente-Gil S, Nuñez-Ortiz N, Morel E, Serra CR, Docando F, Díaz-Rosales P, et al. Immunomodulatory properties of Bacillus subtilis extracellular vesicles on rainbow trout intestinal cells and splenic leukocytes. Front Immunol. 2024;15:1394501. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2024.1394501.

    Article  CAS  PubMed  Google Scholar 

  61. da Silva Barreira D, Lapaquette P, Novion Ducassou J, Couté Y, Guzzo J, Rieu A. Spontaneous prophage induction contributes to the production of membrane vesicles by the Gram-positive bacterium Lacticaseibacillus casei BL23. mBio. 2022;13(5):e0237522. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/mbio.02375-22.

  62. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 2015;65(8):783–97. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/biosci/biv084.

    Article  PubMed  Google Scholar 

  63. Zhou M, Weber SR, Zhao Y, Chen H, Sundstrom JM. Chap. 2 - Methods for exosome isolation and characterization. In: Edelstein L, Smythies J, Quesenberry P, Noble D, editors. Exosomes. Academic Press; 2020. p. 23–38.

  64. Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods. 2015;87:46–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ymeth.2015.05.028.

    Article  CAS  PubMed  Google Scholar 

  65. Tulkens J, De Wever O, Hendrix A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat Protoc. 2020;15(1):40–67. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41596-019-0236-5.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang L, Zhao SQ, Zhang J, Sun Y, Xie YL, Liu YB, et al. Proteomic analysis of vesicle-producing Pseudomonas aeruginosa PAO1 exposed to X-ray irradiation. Front Microbiol. 2020;11:558233. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2020.558233.

  67. Orench-Rivera N, Kuehn MJ. Environmentally controlled bacterial vesicle-mediated export. Cell Microbiol. 2016;18(11):1525–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/cmi.12676.

    Article  CAS  PubMed  Google Scholar 

  68. Mandal PK, Ballerin G, Nolan LM, Petty NK, Whitchurch CB. Bacteriophage infection of Escherichia coli leads to the formation of membrane vesicles via both explosive cell lysis and membrane blebbing. Microbiology. 2021;167(4):001021.https://doiorg.publicaciones.saludcastillayleon.es/10.1099/mic.0.001021

  69. Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in Gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev. 2008;27(6):535–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/mas.20175.

    Article  CAS  PubMed  Google Scholar 

  70. Xie J, Li Q, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol. 2022;40(10):1173–94. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.tibtech.2022.03.005.

    Article  CAS  PubMed  Google Scholar 

  71. Lee J, Kim OY, Gho YS. Proteomic profiling of Gram-negative bacterial outer membrane vesicles: current perspectives. Proteom Clin Appl. 2016;10(9–10):897–909. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/prca.201600032.

    Article  CAS  Google Scholar 

  72. Yun SH, Lee SY, Choi CW, Lee H, Ro HJ, Jun S, et al. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J Microbiol. 2017;55(1):56–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12275-017-6581-6.

  73. Dean SN, Leary DH, Sullivan CJ, Oh E, Walper SA. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci Rep. 2019;9:877. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-018-37120-6.

  74. Li M, Lee K, Hsu M, Nau G, Mylonakis E, Ramratnam B. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol. 2017;17:66. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12866-017-0977-7.

  75. Li Z, Clarke AJ, Beveridge TJ. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol. 1998;180(20):5478–83. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/jb.180.20.5478-5483.1998.

    Article  CAS  PubMed  Google Scholar 

  76. Domínguez Rubio AP, Martínez JH, Martínez Casillas DC, Coluccio Leskow F, Piuri M, Pérez OE. Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Front Microbiol. 2017;8:1783. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2017.01783.

  77. Aguilera L, Toloza L, Giménez R, Odena A, Oliveira E, Aguilar J, et al. Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917. Proteomics. 2014;14(2–3):222–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/pmic.201300328.

  78. Elhenawy W, Debelyy MO, Feldman MF. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. mBio. 2014;5(2):e00909-00914. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/mBio.00909-14.

  79. Kulkarni HM, Jagannadham MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology. 2014;160(Pt 10):2109–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1099/mic.0.079400-0.

  80. Kim H, Kim M, Myoung K, Kim W, Ko J, Kim KP, et al. Comparative lipidomic analysis of extracellular vesicles derived from Lactobacillus plantarum APsulloc 331261 living in green tea leaves using liquid chromatography-mass spectrometry. Int J Mol Sci. 2020;21:21. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms21218076.

  81. Kurata A, Kiyohara S, Imai T, Yamasaki-Yashiki S, Zaima N, Moriyama T, et al. Characterization of extracellular vesicles from Lactiplantibacillus plantarum. Sci Rep. 2022;12:13330. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-022-17629-7.

  82. Dorward DW, Garon CF. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl Environ Microbiol. 1990;56(6):1960–2. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/aem.56.6.1960-1962.1990.

    Article  CAS  PubMed  Google Scholar 

  83. Hu R, Lin H, Wang M, Zhao Y, Liu H, Min Y, et al. Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers. J Anim Sci Biotechnol. 2021;12:25. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40104-020-00532-4.

  84. Zakharzhevskaya NB, Vanyushkina AA, Altukhov IA, Shavarda AL, Butenko IO, Rakitina DV, et al. Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities. Sci Rep. 2017;7(1):5008. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-017-05264-6.

  85. Bryant WA, Stentz R, Le Gall G, Sternberg MJE, Carding SR, Wilhelm T. In Silico analysis of the small molecule content of outer membrane vesicles produced by Bacteroides thetaiotaomicron indicates an extensive metabolic link between microbe and host. Front Microbiol. 2017;8:2440. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2017.02440.

  86. Brameyer S, Plener L, Müller A, Klingl A, Wanner G, Jung K. Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between Vibrio harveyi cells. J Bacteriol. 2018;200(15):e00740.https://doiorg.publicaciones.saludcastillayleon.es/10.1128/jb.00740-17

  87. Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5:17319. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/srep17319.

    Article  CAS  PubMed  Google Scholar 

  88. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.18133.

    Article  CAS  PubMed  Google Scholar 

  89. Li P, Kumar A, Ma J, Kuang Y, Luo L, Sun X. Density gradient ultracentrifugation for colloidal nanostructures separation and investigation. Sci Bull. 2018;63(10):645–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.scib.2018.04.014.

    Article  CAS  Google Scholar 

  90. Wang J, Ma J, Wen X. Basic concepts of density gradient ultracentrifugation. In: Sun X, Luo L, Kuang Y, Li P, editors. Nanoseparation using density gradient ultracentrifugation: mechanism, methods and applications. Singapore: Springer; 2018. p. 21–36.

  91. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Ren Physiol. 2007;292(5):F1657-1661. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajprenal.00434.2006.

    Article  CAS  Google Scholar 

  92. Zhang M, Jin K, Gao L, Zhang Z, Li F, Zhou F, et al. Methods and technologies for exosome isolation and characterization. Small Methods. 2018;2(9):1800021. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/smtd.201800021.

    Article  CAS  Google Scholar 

  93. Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. Cold Spring Harb Protoc. 2015;2015(4):319–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/pdb.top074476.

    Article  PubMed  Google Scholar 

  94. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/cells8070727.

    Article  CAS  PubMed  Google Scholar 

  95. Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol. 2021;9:811971. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fbioe.2021.811971.

    Article  PubMed  Google Scholar 

  96. Samsonov R, Shtam T, Burdakov V, Glotov A, Tsyrlina E, Berstein L, et al. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic. Prostate. 2016;76(1):68–79. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/pros.23101.

    Article  CAS  PubMed  Google Scholar 

  97. Ryu KJ, Lee JY, Park C, Cho D, Kim SJ. Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation. Ann Lab Med. 2020;40(3):253–8. https://doiorg.publicaciones.saludcastillayleon.es/10.3343/alm.2020.40.3.253.

    Article  CAS  PubMed  Google Scholar 

  98. Meggiolaro A, Moccia V, Brun P, Pierno M, Mistura G, Zappulli V, et al. Microfluidic strategies for extracellular vesicle isolation: towards clinical applications. Biosens (Basel). 2022;13(1):50. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/bios13010050.

    Article  CAS  Google Scholar 

  99. Lee K, Shao H, Weissleder R, Lee H. Acoustic purification of extracellular microvesicles. ACS Nano. 2015;9(3):2321–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/nn506538f.

    Article  CAS  PubMed  Google Scholar 

  100. Liu C, Yazdani N, Moran CS, Salomon C, Seneviratne CJ, Ivanovski S, et al. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater. 2024;180:18–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.actbio.2024.04.022.

    Article  CAS  PubMed  Google Scholar 

  101. Comfort N, Cai K, Bloomquist TR, Strait MD, Ferrante AW Jr, Baccarelli AA. Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles. J Vis Exp. 2021;28:e62447.https://doiorg.publicaciones.saludcastillayleon.es/10.3791/62447

    Article  CAS  Google Scholar 

  102. Palmieri V, Lucchetti D, Gatto I, Maiorana A, Marcantoni M, Maulucci G, et al. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanopart Res. 2014;16(9):2583. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11051-014-2583-z.

    Article  CAS  Google Scholar 

  103. Hartjes TA, Mytnyk S, Jenster GW, van Steijn V, van Royen ME. Extracellular vesicle quantification and characterization: common methods and emerging approaches. Bioengineering (Basel). 2019;6(1):7. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/bioengineering6010007.

    Article  CAS  PubMed  Google Scholar 

  104. Vogel R, Coumans FA, Maltesen RG, Böing AN, Bonnington KE, Broekman ML, et al. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. J Extracell Vesicles. 2016;5:31242. https://doiorg.publicaciones.saludcastillayleon.es/10.3402/jev.v5.31242.

    Article  CAS  PubMed  Google Scholar 

  105. Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci. 2017;18(6):1153. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms18061153.

    Article  CAS  PubMed  Google Scholar 

  106. Ni D, Xu P, Gallagher S. Immunoblotting and immunodetection. Curr Protoc Mol Biol. 2016;114:10. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/0471142727.mb1008s114.

    Article  Google Scholar 

  107. Schey KL, Luther JM, Rose KL. Proteomics characterization of exosome cargo. Methods. 2015;87:75–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ymeth.2015.03.018.

    Article  CAS  PubMed  Google Scholar 

  108. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, Hole P, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7(6):780–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.nano.2011.04.003.

    Article  CAS  PubMed  Google Scholar 

  109. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11095-010-0073-2.

    Article  CAS  PubMed  Google Scholar 

  110. Kim A, Ng WB, Bernt W, Cho N-J. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci Rep. 2019;9:2639. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-019-38915-x.

  111. Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–27. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12551-016-0218-6.

    Article  CAS  PubMed  Google Scholar 

  112. Wu Y, Deng W, Klinke DJ II. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140(19):6631–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1039/c5an00688k.

  113. Maas SL, Broekman ML, de Vrij J. Tunable resistive pulse sensing for the characterization of extracellular vesicles. Methods Mol Biol. 2017;1545:21–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/978-1-4939-6728-5_2.

    Article  CAS  PubMed  Google Scholar 

  114. Maas SL, De Vrij J, Broekman ML. Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. J Vis Exp. 2014;10.3791/51623(92):e51623. https://doiorg.publicaciones.saludcastillayleon.es/10.3791/51623.

    Article  CAS  Google Scholar 

  115. Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010;77(6):502–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/cyto.a.20886.

    Article  CAS  PubMed  Google Scholar 

  116. Olaya-Abril A, Prados-Rosales R, McConnell MJ, Martín-Peña R, González-Reyes JA, Jiménez-Munguía I, et al. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteom. 2014;106:46–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jprot.2014.04.023.

  117. Crescitelli R, Lässer C, Lötvall J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc. 2021;16(3):1548–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41596-020-00466-1.

    Article  CAS  PubMed  Google Scholar 

  118. Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48:11. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13567-017-0418-5.

  119. Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol. 2017;25(10):851–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.tim.2017.05.004.

    Article  CAS  PubMed  Google Scholar 

  120. Tian M, He X, Feng Y, Wang W, Chen H, Gong M, et al. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics (Basel). 2021;10(5):539. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/antibiotics10050539.

    Article  CAS  PubMed  Google Scholar 

  121. Heffernan C. Antimicrobial resistance in China’s livestock. Nat Food. 2022;3(3):191–2. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s43016-022-00478-y.

    Article  PubMed  Google Scholar 

  122. Kasimanickam V, Kasimanickam M, Kasimanickam R. Antibiotics use in food animal production: escalation of antimicrobial resistance: where are we now in combating AMR? Med Sci (Basel). 2021;9(1):14. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/medsci9010014.

    Article  CAS  PubMed  Google Scholar 

  123. van Zyl WF, Deane SM, Dicks LMT. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes. 2020;12(1):1831339. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/19490976.2020.1831339.

    Article  CAS  PubMed  Google Scholar 

  124. Pan L, Zhao PF, Ma XK, Shang QH, Xu YT, Long SF, et al. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J Anim Sci. 2017;95(6):2627–39. https://doiorg.publicaciones.saludcastillayleon.es/10.2527/jas.2016.1243.

  125. Collado MC, Grześkowiak Ł, Salminen S. Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol. 2007;55(3):260–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00284-007-0144-8.

    Article  CAS  PubMed  Google Scholar 

  126. Olszewski J, Adamski A, Skrzypek T, Ferenc K, Zabielski R. Chap. 8 - mechanical and immunological intestinal barriers. In: Zabielski R, Skrzypek T, editors. Atlas of the Pig Gut. Academic; 2021. p. 127–38.

  127. Lin S, Wu F, Cao Z, Liu J. Advances in nanomedicines for interaction with the intestinal barrier. Adv NanoBiomed Res. 2022;2(6):2100147. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/anbr.202100147.

    Article  CAS  Google Scholar 

  128. Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota-a mutual relationship. Animals (Basel). 2022;12(2):145. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ani12020145.

  129. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s12276-018-0126-x.

    Article  CAS  PubMed  Google Scholar 

  130. Chakaroun RM, Massier L, Kovacs P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients. 2020;12(4):1082. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/nu12041082.

    Article  CAS  PubMed  Google Scholar 

  131. Olivo-Martínez Y, Bosch M, Badia J, Baldomà L. Modulation of the intestinal barrier integrity and repair by microbiota extracellular vesicles through the differential regulation of Trefoil Factor 3 in LS174T goblet cells. Nutrients. 2023;15(11):2437. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/nu15112437.

    Article  CAS  PubMed  Google Scholar 

  132. Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12(4):509–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.chom.2012.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal barrier in human health and disease. Int J Environ Res Public Health. 2021;18(23):12836. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijerph182312836.

    Article  CAS  PubMed  Google Scholar 

  134. Tang X, Xiong K, Fang R, Li M. Weaning stress and intestinal health of piglets: a review. Front Immunol. 2022;13:1042778. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2022.1042778.

    Article  CAS  PubMed  Google Scholar 

  135. Castillo M, Martín-Orúe SM, Nofrarías M, Manzanilla EG, Gasa J. Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet Microbiol. 2007;124(3):239–47. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetmic.2007.04.026.

    Article  CAS  PubMed  Google Scholar 

  136. Valguarnera E, Scott Nichollas E, Azimzadeh P, Feldman Mario F. Surface exposure and packing of lipoproteins into outer membrane vesicles are coupled processes in Bacteroides. mSphere. 2018;3(6):e00559.https://doiorg.publicaciones.saludcastillayleon.es/10.1128/msphere.00559

  137. Nishiyama K, Takaki T, Sugiyama M, Fukuda I, Aiso M, Mukai T, et al. Extracellular vesicles produced by Bifidobacterium longum export mucin-binding proteins. Appl Environ Microbiol. 2020;86(19): e01464-20. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/aem.01464-20.

  138. Tong L, Zhang X, Hao H, Liu Q, Zhou Z, Liang X, et al. Lactobacillus rhamnosus GG derived extracellular vesicles modulate gut microbiota and attenuate inflammatory in DSS-induced colitis mice. Nutrients. 2021;13(10):3319. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/nu13103319.

  139. Hao H, Zhang X, Tong L, Liu Q, Liang X, Bu Y, et al. Effect of extracellular vesicles derived from Lactobacillus plantarum Q7 on gut microbiota and ulcerative colitis in mice. Front Immunol. 2021;12:777147. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2021.777147.

  140. Johnson-Henry KC, Donato KA, Shen-Tu G, Gordanpour M, Sherman PM. Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun. 2008;76(4):1340–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/iai.00778-07.

  141. Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, et al. Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal. 2022;36(1):e24093. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jcla.24093.

    Article  CAS  PubMed  Google Scholar 

  142. Drayton M, Deisinger JP, Ludwig KC, Raheem N, Müller A, Schneider T, et al. Host defense peptides: dual antimicrobial and immunomodulatory action. Int J Mol Sci. 2021;22(20):11172. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms222011172.

    Article  CAS  PubMed  Google Scholar 

  143. Stentz R, Horn N, Cross K, Salt L, Brearley C, Livermore DM, et al. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics. J Antimicrob Chemother. 2015;70(3):701–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/jac/dku466.

  144. Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol. 2015;15(6):375–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nri3837.

    Article  CAS  PubMed  Google Scholar 

  145. Cañas MA, Fábrega MJ, Giménez R, Badia J, Baldomà L. Outer membrane vesicles from probiotic and commensal Escherichia coli activate NOD1-mediated immune responses in intestinal epithelial cells. Front Microbiol. 2018;9:498. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2018.00498.

  146. Behrouzi A, Mazaheri H, Falsafi S, Tavassol ZH, Moshiri A, Siadat SD. Intestinal effect of the probiotic Escherichia coli strain Nissle 1917 and its OMV. J Diabetes Metab Disord. 2020;19(1):597–604. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s40200-020-00511-6.

  147. Kang EA, Choi HI, Hong SW, Kang S, Jegal HY, Choi EW, et al. Extracellular vesicles derived from Kefir Grain Lactobacillus ameliorate intestinal inflammation via regulation of proinflammatory pathway and tight junction integrity. Biomedicines. 2020;8(11):522. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/biomedicines8110522.

    Article  CAS  PubMed  Google Scholar 

  148. Rodovalho VR, da Luz BSR, Rabah H, do Carmo FLR, Folador EL, Nicolas A, et al. Extracellular vesicles produced by the probiotic Propionibacterium freudenreichii CIRM-BIA 129 mitigate inflammation by modulating the NF-κB pathway. Front Microbiol. 2020;11:1544. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2020.01544.

    Article  PubMed  Google Scholar 

  149. Fan J, Zhang Y, Zuo M, Ding S, Li J, Feng S, et al. Novel mechanism by which extracellular vesicles derived from Lactobacillus murinus alleviates deoxynivalenol-induced intestinal barrier disruption. Environ Int. 2024;185:108525. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.envint.2024.108525.

  150. Choi JH, Moon CM, Shin TS, Kim EK, McDowell A, Jo MK, et al. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp Mol Med. 2020;52(3):423–37. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s12276-019-0359-3.

    Article  CAS  PubMed  Google Scholar 

  151. Li J, Feng S, Wang Z, He J, Zhang Z, Zou H, et al. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes. 2023;9:33. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41522-023-00403-6.

    Article  CAS  PubMed  Google Scholar 

  152. Alpdundar Bulut E, Bayyurt Kocabas B, Yazar V, Aykut G, Guler U, Salih B, et al. Human gut commensal membrane vesicles modulate inflammation by generating M2-like macrophages and myeloid-derived suppressor cells. J Immunol. 2020;205(10):2707–18. https://doiorg.publicaciones.saludcastillayleon.es/10.4049/jimmunol.2000731.

    Article  CAS  PubMed  Google Scholar 

  153. Durant L, Stentz R, Noble A, Brooks J, Gicheva N, Reddi D, et al. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. Microbiome. 2020;8:88. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40168-020-00868-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Al-Nedawi K, Mian MF, Hossain N, Karimi K, Mao YK, Forsythe P, et al. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J. 2015;29(2):684–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1096/fj.14-259721.

    Article  CAS  PubMed  Google Scholar 

  155. Mandelbaum N, Zhang L, Carasso S, Ziv T, Lifshiz-Simon S, Davidovich I, et al. Extracellular vesicles of the Gram-positive gut symbiont Bifidobacterium longum induce immune-modulatory, anti-inflammatory effects. NPJ Biofilms Microbiomes. 2023;9(1):30. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41522-023-00400-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Müller M, Fink K, Geisel J, Kahl F, Jilge B, Reimann J, et al. Intestinal colonization of IL-2 deficient mice with non-colitogenic B. vulgatus prevents DC maturation and T-cell polarization. PLoS One. 2008;3(6):e2376. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0002376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Diaz-Garrido N, Fábrega M-J, Vera R, Giménez R, Badia J, Baldomà L. Membrane vesicles from the probiotic nissle 1917 and gut resident Escherichia coli strains distinctly modulate human dendritic cells and subsequent T cell responses. J Funct Foods. 2019;61:103495. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jff.2019.103495.

    Article  CAS  Google Scholar 

  158. Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, et al. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev. 2022;186:114321. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.addr.2022.114321.

    Article  CAS  PubMed  Google Scholar 

  159. Yip JLK, Balasuriya GK, Spencer SJ, Hill-Yardin EL. The role of intestinal macrophages in gastrointestinal homeostasis: heterogeneity and implications in disease. Cell Mol Gastroenterol Hepatol. 2021;12(5):1701–18. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jcmgh.2021.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/imm.12910.

    Article  CAS  PubMed  Google Scholar 

  161. Hegarty LM, Jones G-R, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Reviews Gastroenterol Hepatol. 2023;20(8):538–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41575-023-00769-0.

    Article  Google Scholar 

  162. Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L, et al. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes. 2022;14(1):2134689. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/19490976.2022.2134689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lajqi T, Köstlin-Gille N, Hillmer S, Braun M, Kranig SA, Dietz S, et al. Gut microbiota-derived small extracellular vesicles endorse memory-like inflammatory responses in murine neutrophils. Biomedicines. 2022;10(2):442. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/biomedicines10020442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Song C, Chai Z, Chen S, Zhang H, Zhang X, Zhou Y. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med. 2023;55(4):681–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s12276-023-00960-y.

    Article  CAS  PubMed  Google Scholar 

  165. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2017.00598.

    Article  CAS  PubMed  Google Scholar 

  166. Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol. 2022;19(12):785–803. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41575-022-00675-x.

    Article  PubMed  Google Scholar 

  167. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9(5):356–68. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrmicro2546.

    Article  CAS  PubMed  Google Scholar 

  168. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17(2):375–412. https://doiorg.publicaciones.saludcastillayleon.es/10.1083/jcb.17.2.375.

    Article  CAS  PubMed  Google Scholar 

  169. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84(3):345–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0092-8674(00)81279-9.

    Article  CAS  PubMed  Google Scholar 

  170. Popoff MR, Geny B. Multifaceted role of rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim Biophys Acta. 2009;1788(4):797–812. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbamem.2009.01.011.

    Article  CAS  PubMed  Google Scholar 

  171. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nri3608.

    Article  CAS  PubMed  Google Scholar 

  172. Suzuki T. Regulation of the intestinal barrier by nutrients: the role of tight junctions. Anim Sci J. 2020;91(1):e13357. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/asj.13357.

    Article  PubMed  Google Scholar 

  173. Carvalho AL, Fonseca S, Miquel-Clopés A, Cross K, Kok KS, Wegmann U, et al. Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract. J Extracell Vesicles. 2019;8(1):1632100. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/20013078.2019.1632100.

    Article  CAS  PubMed  Google Scholar 

  174. Pang Y, Ermann Lundberg L, Mata Forsberg M, Ahl D, Bysell H, Pallin A, et al. Extracellular membrane vesicles from Limosilactobacillus reuteri strengthen the intestinal epithelial integrity, modulate cytokine responses and antagonize activation of TRPV1. Front Microbiol. 2022;13:1032202. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2022.1032202.

    Article  PubMed  Google Scholar 

  175. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50(2):e450. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/emm.2017.282.

    Article  CAS  PubMed  Google Scholar 

  176. Hering NA, Richter JF, Fromm A, Wieser A, Hartmann S, Günzel D, et al. TcpC protein from E. coli Nissle improves epithelial barrier function involving PKCζ and ERK1/2 signaling in HT-29/B6 cells. Mucosal Immunol. 2014;7(2):369–78. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/mi.2013.55.

    Article  CAS  PubMed  Google Scholar 

  177. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One. 2007;2(12):e1308. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0001308.

    Article  CAS  PubMed  Google Scholar 

  178. Alvarez CS, Badia J, Bosch M, Giménez R, Baldomà L. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol. 2016. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2016.01981.

  179. Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K. Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun. 2007;75(5):2399–407. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/iai.01563-06.

    Article  CAS  PubMed  Google Scholar 

  180. Fritsch SD, Sukhbaatar N, Gonzales K, Sahu A, Tran L, Vogel A, et al. Metabolic support by macrophages sustains colonic epithelial homeostasis. Cell Metab. 2023;35(11):1931–43. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cmet.2023.09.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our apologies to the researchers whose studies may not be fully represented in this review. Our aim is to provide a comprehensive overview, but we recognize that limitations may affect the completeness and clarity of our analysis.

Funding

This work was supported by the National Nature Science Foundation of China (32272898).

Author information

Authors and Affiliations

Authors

Contributions

ST collected information and designed the review. YZ wrote the review. MS refined the grammar and structure of the review. JF and XG checks the review. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Shiyu Tao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have approved the final manuscript.

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, M., Fan, J. et al. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Animal Sci Biotechnol 15, 149 (2024). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40104-024-01102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40104-024-01102-8

Keywords